Trigonometric Solution for Angled Box Side Rotation Ben Blackwell

The question is as follows: given that the sides of a square box have been cut at an angle of 71.3° with respect to the horizion, what angle ϕ do you rotate the sides so that the upper corners of the four sides are perfectly joined. While it is possible to have SketchUp construct a graphical solution, the solution presented here will use only trigonometry.

The box geometry before side rotation is shown below in Figure 0.1:

Figure 0.1: Box with angled sides before rotation into final position.
The trigonometry solution for the problem is

$$
\begin{equation*}
\cos \phi=\frac{1}{\tan \theta} ; \text { for } \theta=71.3^{\circ}, \phi=70.21562 \ldots \tag{0.1}
\end{equation*}
$$

where θ is given for the problem. The discussion that follows will present the derivation of this result.

Using SketchUp, a sketch was created to define some nomenclature; this result is shown in Figure 0.2.

The angle ϕ through which the sides must be rotated through is defined in Figure 0.3. The geometry in Figure 0.3 tells us that

Figure 0.2: 3-D sketch of intersection between rotated side and base of box.

Figure 0.3: Definition of angle ϕ through which side must be rotated.

Figure 0.4: Sketch of box side with angled cut of 71.3°.

$$
\begin{equation*}
\cos \phi=y / w \tag{0.2}
\end{equation*}
$$

Since the length b in Figure 0.2 lies along the 45° bisector, the sides x and y are of identical length.

The remaining step is to relate the side length x (or y) to the board width w using Figure 0.4 .

$$
\begin{equation*}
\tan \theta=w / x=w / y \tag{0.3}
\end{equation*}
$$

Combining Eqs. (0.2) and (0.3) yields the final result

$$
\begin{equation*}
\cos \phi=\frac{1}{\tan \theta} \tag{0.4}
\end{equation*}
$$

