
I Love Ruby 2015 Beta

1

I Love Ruby 2015 Beta

Contents
I love Ruby..4
Copyright...5
 I..6
Kannan Doss...6
Iain McNulty...7
Getting this book...8

Getting example programs.......................8
The books source......................................8

Installing Ruby..9
Installing Ruby on Debian flavor
GNU/Linux...9
Installing Ruby Natively (Debian flavor
Gnu Linux)...10
Installing on Windows and Mac.............10
Installing IDE...10

Online Resources...11
Ruby Website..11
Ruby Forum..11
Twitter...11

Getting Started..13
Interactive Ruby.....................................13
Doing some Math...................................13

Space doesn't matter..........................16
Decimals..16

Variables...16
Naming Convention...........................18
The underscore – a special variable...18

Constants..19
Strings...20

String Functions.................................21
Escape sequence................................22

Using Text Editor...................................23
Printing Something.................................24
Getting Input...25
Comments...26

Comparison and Logic................................28
Logical Operators...................................28

true != “true”......................................30
if..30
if else..30
elsif...31
unless..32
unless else...33
case when...34
? :..36
Assigning logic statement to variables...37

Loops...40
downto..41
times...41
upto...42
step..43
while...44
until...45
break...46
next...46
redo...47
loop...47

Arrays..50
More on Array..53
Set operations...55
Empty array is true.................................56

Hashes and Symbols...................................58
Default values in Hash...........................59
Looping hashes.......................................59
More way of hash creation.....................60
Using symbols..61
String, frozen string & symbol, their
memory foot print...................................64

Ranges...66
Ranges used in case .. when...................67
Checking Intervals..................................69
Using triple dots …................................70

Functions...71
Argument Passing...................................72
Default Argument...................................73
Returning Values....................................74
Keyword arguments................................75
Recursive function..................................76
Variable number of arguments................78
Hashes to functions................................79

Variable Scope...81
Global Variables.....................................83

Classes & Objects.......................................87
Creating a Square...................................87
Functions in Class..................................88
Initializers or Constructors.....................89
Private Methods......................................91
Class variables and methods...................92
Inheritance..95
Overriding Methods...............................96
The super function..................................99
Extending class.....................................100

2

I Love Ruby 2015 Beta

Reflection...101
Encapsulation.......................................105
Polymorphism......................................107
Class Constants.....................................108

Breaking large programs...........................111
Struct and OpenStruct...............................113
Rdoc..117

Reading Ruby Documentation..............117
Creating Documentation.......................118

Ruby Style Guides.....................................121
Modules and Mixins..................................122

Calling functions without include........124
Classes in modules...............................128
Mixins...130

Shebang49...133
Date and Time...134

Days between two days........................136
How many days have you lived?..........137

Files...140
Storing output into files........................140
Taking file as input...............................140
File copy – a kind of.............................141
Displaying a file...................................142
Reading file line by line.......................143
Open and new – the difference.............144
Defining our own line endings.............145
Reading byte by byte............................146
Reading single character at a time........147
Renaming files......................................148
Finding out position in a file................148
Writing into files...................................150
Appending content into files................152
Storing objects into files.......................153

Pstore...153
YAML..157

Proc, Lambdas and Blocks........................160
Passing parameters...............................161
Passing Proc to methods.......................161
Returning Proc from function...............162
Proc and Arrays....................................163
Lambda...164
Passing Argument to Lambda...............164
Proc and Lambdas with Functions.......165
The second difference...........................166
Lambda and Arrays..............................167
Blocks and Functions...........................167

Multi Threading..170
Scope of thread variables.....................173
Thread Exclusion..................................174
Deadlocks...177
Creating multiple threads.....................179
Thread Exception.................................182
Thread Class Methods..........................184
Thread Instance Methods.....................185

Exception Handling...................................187
Exception and Threads.........................190
Raising Exceptions...............................191

Regular Expressions..................................193
Creating a empty regexp.......................193
Detecting Patterns.................................193
Things to remember..............................194
The dot..195
Character classes..................................195
Scanning...197
Captures..199
MatchData class...................................202
Anchors and Assertions........................203

Anchors..203
Assertions..205

Ignoring Cases......................................206
Ignore Spaces.......................................206
Dynamic Regexp..................................207

Gems...209
Searching a gem...................................209
Installing gem.......................................210
Viewing Documentation.......................211
Using gem...211
The Gemfile..212
Creating a gem......................................214
Uninstalling a Gem...............................216

Meta Programming....................................217
Send..217
Method Missing....................................218
Define Method......................................221

Final Word...223
For 2015 Edition...................................223
For 2014 Edition...................................223
For 2013 Edition...................................223
For 2012 Edition...................................223
For 2010 Edition...................................224

Underscore..226
An important Math Discovery..................227

3

I Love Ruby 2015 Beta

I love Ruby

Ruby is an easy to learn programming language, it was invented by a guy named Matz in Japan.

Ruby is a free1 software and can be used by any one for zero cost. Ruby's popularity was initially

confined to Japan, later it slowly trickled out to rest of the world. Things changed with the

emergence of Ruby on Rails2 which is a popular web-development framework written with Ruby.

I was thrilled when I started to program in Ruby. One of my first application was a student ranking

software for my mom who was a teacher. I was able to write the console based application in just 32

lines. This opened my eyes and made me realize the power of Ruby. The language was simple, easy

to learn and nearly perfect. Currently I am an professional Ruby on Rails programmer.

This book is written for GNU/Linux (Debian distro) users, thats because I think GNU/Linux will

conquer desktops of programmers in near future. Almost all who have Debian GNU/Linux based

distro should feel at home while trying to learn Ruby using this book. If you are using other

operating systems like Solaris, OSX or Windows please contact your Operating System help

channels to learn how to install or get started with Ruby. You can also visit http://ruby-lang.org to

learn how get started with Ruby.

1 Free here does not mean zero cost. Visit http://fsf.org to know more
2 http://rubyonrails.org

4

http://ruby-lang.org/
http://rubyonrails.org/
http://fsf.org/

I Love Ruby 2015 Beta

Copyright
Copyright (c) 2009 - 2013 Bigbang to Infinite, Karthikeyan A K

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU

Free Documentation License, Version 1.3 or any later version published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of

the license can be found in http://www.gnu.org/copyleft/fdl.html

5

http://www.gnu.org/copyleft/fdl.html

I Love Ruby 2015 Beta

 I

Hi, I am Karthikeyan A K, the author of this book. I came

across Ruby and found that the language was dazzling. I

thought why not write a book for self study and so was

created this book.

Currently I am an web developer, I use Ruby on Rails due to

its great innovative features. You can contact me at

77minds@gmail.com or tweet to @karthik_ak

This book is no match to other Ruby best sellers, this is just

an attempt to have a personalized Ruby study material.

Kannan Doss

I am very much grateful Kannan Doss who once worked in

Mind As Lab as a apprentice web developer and was also a

Ruby on Rails geek. I thank him for putting sincere efforts to

improve the quality of this book. He has proof read the entire

book, spotted mistakes he could find, cataloged them and

corrected them.

Without him this book wont be as good quality as it is now. I

am not saying that this book is superb, but his efforts truly

played a decisive role to make this book what it is.

You can contact Kannan at doss.kannan@gmail.com

6

mailto:doss.kannan@gmail.com
mailto:77minds@gmail.com

I Love Ruby 2015 Beta

Iain McNulty

I don't know who Iain is, he proof read some of the pages in

this book very well. He is an Irishman and possibly loves

freedom of information. I am very grateful that he has

contributed to this book and hope he will contribute more.

This is his facebook page

https://www.facebook.com/iain.mcnulty.3

7

https://www.facebook.com/iain.mcnulty.3

I Love Ruby 2015 Beta

Getting this book

This book is hosted at http://goo.gl/1qrMUN . All announcements about this book are available on

facebook in this URL: https://www.facebook.com/pages/I-love-ruby/172269549451705 and you do

not need to be a member of facebook.com to access this page.

Getting example programs
The example programs in this book are hosted in Github in the following URL:

https://github.com/mindaslab/ilrx . I realize many who read this book are starters, who have just

plunged into programming. Hence you can download all examples by clicking this link:

https://github.com/mindaslab/ilrx/zipball/master

The books source
Get the book's source here https://www.dropbox.com/s/oj7ky96iftwh4xv/I%20Love%20Ruby

%202015.odt

8

https://www.dropbox.com/s/oj7ky96iftwh4xv/I%20Love%20Ruby%202015.odt
https://www.dropbox.com/s/oj7ky96iftwh4xv/I%20Love%20Ruby%202015.odt
https://github.com/mindaslab/ilrx/zipball/master
https://github.com/mindaslab/ilrx
https://www.facebook.com/pages/I-love-ruby/172269549451705
http://goo.gl/1qrMUN

I Love Ruby 2015 Beta

Installing Ruby

Installing Ruby on Debian flavor GNU/Linux
You need to install something called RVM (ruby version manager) which will manage multiple ruby

versions. Why? It's because Ruby's version changes so fast.. Before you had 1.8, now 1.9 and soon

Ruby 2 will be out. Apart from just using Ruby alone, you will also use it for other stuff like web

development with packages such as Sinatra and Ruby on RailsTM . You might need to change from

one version to other without uninstalling and reinstalling ruby again and again. RVM manages this

for you. With simple commands we can switch between Ruby versions easily.

Installing RVM :

OK, to install RVM, you need to have curl (a program that can download things). To get curl, just

type

$ sudo apt­get install curl

Now install RVM using the following command

$ \curl ­sSL https://get.rvm.io | bash ­s stable ­­ruby

Once done give these commands into terminal. These will tell Ubuntu GNU / Linux where to find

the ruby interpreter.

$ echo '[[­s "$HOME/.rvm/scripts/rvm"]] && source "$HOME/.rvm/scripts/rvm" #
Load RVM into a shell session *as a function*' >> ~/.bashrc

$ source ~/.bashrc

Once this is done, you may need to restart your computer. Open the terminal and type the following:

$ ruby ­v

It will spit an output something like this:

ruby 2.1.0p0 (2013­12­25 revision 44422) [x86_64­linux]

Then all is OK!

9

I Love Ruby 2015 Beta

Installing Ruby Natively (Debian flavor Gnu Linux)
rvm is a version manager fr ruby. You can install many versions of Ruby interpreter like ruby 1.8.7 ,

ruby 1.9.3, ruby 2.0.0 and so on, on a same system and switch between them seamlessly. For more

information visit http://rvm.io

But some wish to install Ruby supported natively on their Linux platform. For that all you need to

do is type the following thing in your terminal (leave out the initial $ sign, as it symbolizes the

prompt

$ sudo apt­get install ruby

The above thing will install Ruby on your system.

Installing on Windows and Mac
I don't use Windows or Mac, so please ask respective help channels on how to install Ruby in them.

Installing IDE
You need a good IDE (Integrated development environment) to get started with Ruby. I recommend

simple and light weight IDE Geany3. To install the IDE in Ubuntu just type (without that $):

$ sudo apt­get install geany

 If the system asks for administrator password, provide it.

Click the dash button and type in geany. Click on the geany icon, you will get it :-)

3 Windows users goto http://www.geany.org/ to download the installer

10

http://www.geany.org/
http://rvm.io/

I Love Ruby 2015 Beta

Online Resources
Ruby has got an excellent online community of hackers who are ready to help almost any one who

has any doubt about Ruby. They love the programming language and want others to love and

experience it. Ruby is a great programming language that will put something good in your heart.

Once you have learned it and start to interact with fellow hackers, you will naturally tend to help

others. So do visit the websites recommended in this section. They might be of great use to you.

Ruby Website
URL: http://ruby-lang.org

Ruby website is a great place to start with Ruby. It provides you with the installers to install Ruby

on your operating system. It has cool links like 'Try Ruby! in your browser', which lets you try out

Ruby right from your web browser and a link called 'Ruby in Twenty Minutes' teaches you the

basics of Ruby programming. Ruby is such a simple language that you just need 20 minutes to

grasp it! Trust me it's true!

Ruby Forum
URL: http://www.ruby-forum.com/

So where to go if you have doubts with Ruby? You can visit http://www.ruby-forum.com/ which is

a website that is nothing but collection of Ruby forums and contains lot of questions and answers

about Ruby. No matter how stupid you think it may be, you can post your question. A kind enough

gentleman (or a lady if you are lucky) will answer it. For heaven's sake,, never fail to ask questions.

The difference between a good and great programmer could be just a question you ask.

Twitter
URL: http://twitter.com

Twitter is a socializing website. Then why on Earth am I putting it here? Well lots of Ruby

11

http://twitter.com/
http://www.ruby-forum.com/
http://www.ruby-forum.com/
http://ruby-lang.org/

I Love Ruby 2015 Beta

programmers use twitter, possibly because it was written with Ruby. To get the latest news about

“Ruby Programming”, type it in the search bar and press search. You will get latest trending topics

about Ruby language. Try searches like “Ruby language” and blah blah....

12

I Love Ruby 2015 Beta

Getting Started
Having installed the needed software, lets gets started.

Interactive Ruby
Ruby provides us a easy way to interact with it, this feature is called interactive ruby or irb. With irb

you can type small bits of ruby code in your console and see it get executed. irb is a great tool to

check out small pieces of Ruby code. In your terminal type irb or irb –­simple­prompt , you

will be getting prompt as shown

irb(main):001:0>

The above prompt will be got if you had typed irb

>>

The above prompt will be got if you had typed irb –­simple­prompt, in examples from now on I

will be using the simple prompt as its simple for me to write in this book. Lets write our first hello

world program, in the prompt type the following (don't type those >>)

>> puts 'Hello World!'

When you press enter, you will get output as follows. In Ruby puts is used for printing some thing

onto the console.

Hello World !
=> nil

Very well, we have completed our hello world program under a minute. Lets check what is 56 to the

power of 31

>> 56**31
=> 1562531701075863192779448904272185314811647640213651456

OOPS! You never thought it would be such a large number, did you? Any way, the ** is used to find

a number raised to the power of another number.

To quit irb and return to normal console or terminal prompt type quit

Doing some Math
Computer is a device that computes, or does some math. With irb we can do easy math. If you

13

I Love Ruby 2015 Beta

don't like to work with numbers, ruby can do it for you. So, first, lets add these numbers : 1, 45, 67,

893, 72, 56 and -128. To do so in your irb prompt just type these numbers separated by a plus '+'

sign and you will get the result

>> 1 + 45 + 67 + 893 + 72 + 56 + ­128
=> 1006

Here are some common math operators that you will find useful

Operator What they do

+ Adds numbers

­ Subtracts a number from another number

/ Divides a number with another number

* Multiplies two numbers

** Finds a number raised to the power of another

% Finds the remainder

+= Adds and assigns a value to a variable

­= Subtracts and assigns a value to a variable

*= Multiply and assigns a value to a variable

/= Divides and assigns a value to a variable

%= Finds the remainder and assigns it to a variable

Addition Example: Lets say that I want to add 56 and 72 and find its result, I can do it as shown:

>> 56+72
=> 128

Subtraction Example: In this example I am subtracting 64 from 112

>> 112­64
=> 48

Division Example: Lets say I want to divide 117 by12 and find the quotient, I can do in Ruby like

this

>> 117/12
=> 9

Power Example: Lets say I want to find what we will get by cubing five (five raised to the power

of three), I can do it in Ruby as shown

>> 5**3
=> 125

Modulus or Remainder Example: I want to know what we will get as remainder when we divide

21 by 4, I can do it as shown

14

I Love Ruby 2015 Beta

>> 21%4
=> 1

Addition with assignment Example: Lets declare a variable i, set it to zero and add 24 to it. In

ruby you can do it as shown

>> i = 0
=> 0
>> i+=24
=> 24
>> i
=> 24

At the end when we type i and see we get 24. This means i holds the value 24 in it.

Subtraction with assignment Example: Lets declare a variable j , assign it with a value 50 and

take away 17 from it

>> j = 50
=> 50
>> j ­= 17
=> 33
>> j
=> 33

At the end when we type j and see we get 33. This means j holds the value 33 in it.

Multiplication with assignment Example: Lets declare a variable k, set it to 3 and multiply it by

nine

>> k = 3
=> 3
>> k *= 9
=> 27
>> k
=> 27

At the end when we type k and see we get 27. This means k holds the value 27 in it.

Division with assignment Example: Lets declare a variable s, set it to 25 and divide it by 5

>> s = 25
=> 25
>> s /= 5
=> 5
>> s
=> 5

At the end when we type s and see we get 5. This means s holds the value 5 in it.

Try other operators on your own, I'm running out of patience.

15

I Love Ruby 2015 Beta

Space doesn't matter

Lets say that I want to add 54 with 62, how can I command irb to do it. Should it be 54+62 or can I

leave spaces so that code could be neatly written like 54 + 62 . Well, fortunately in Ruby leaving

spaces doesn't really matter you can give it in any number of ways as shown below and still get the

same result.

>> 54+62
=> 116
>> 54 +62
=> 116
>> 54+ 62
=> 116
>> 54 + 62
=> 116
>> 54 + 62
=> 116

Notice that the plus weather it sticks with 54 or 62 or has space between them, no matter how long

the space is, it prints out the right result.

Decimals

When you divide 5 by 3 in ruby you get result as follows

>> 5/3
=> 1

In other words it gives the quotient. In reality 5 divided by 3 is almost 1.666666666666666667, so

how to get this answer? The truth is 5 and 3 are integers, or numbers that don't have decimal part. If

you want a fairly accurate answer you can rephrase your command to Ruby as follows

>> 5.0/3
=> 1.66666666666667

In the above way, we are specifying 5.0 instead of 5, in other words we are forcing Ruby to make a

floating point or decimal calculation instead of integer calculation. This makes Ruby to give an

fairly accurate answer.

Variables
Variables are something that stores value in it. You can imagine them as a box which can hold

pebbles. If a box named a holds five pebbles then its value is 5, if another box b holds 3 pebbles,

then its value is three. Let say you get an new box called c and you want its value to be the sum of

box a and box b, then you simply add number of pebbles in a and b, it totals to 8, you put 8 pebbles

16

I Love Ruby 2015 Beta

in c to make c = a+b. I hope you have got a hint what a variable is. Lets program it in Ruby

>> a = 5
=> 5
>> b = 3
=> 3
>> c = a+b
=> 8

Lets try another problem, I buy 50 mangoes from a farmer at Rs 10/- and bring it to the market and

sell it at Rs 15/- each, what is my profit.

Answer:

OK first I have 50 mangoes so in irb I type as follows:

>> mangoes = 50
=> 50

So I have assigned the value of 50 to a variable mangoes. Next I declare and assign a value of 10 to

a variable buy_price as shown:

>> buy_price = 10
=> 10

In a similar fashion I assign 15 to a variable named sell_price

>> sell_price = 15
=> 15

Now profit per mango is the difference between sell and buy price, hence I can calculate it as shown

>> profit = sell_price ­ buy_price
=> 5

By selling a mango I get a profit of Rs 5/-, what will I get by selling 50 mangoes? Its a multiple of

profit with mangoes and we get it as shown

>> total_profit = profit * mangoes
=> 250

So by selling 50 mangoes we can earn a profit of Rs 250/-. Lets say that we have bought 72

mangoes, now we want to know what profit would be, this can be easily done by changing or

varying the value mangoes from 50 to 72 and recalculating the total_profit as shown below

>> mangoes = 72
>> total_profit = profit * mangoes
=> 360

Now you may know why we call these things are variables, a variable is a box that can contain any

value it wants. Just like you can add or take away pebbles from a box, you can do the same to

variables.

17

I Love Ruby 2015 Beta

Naming Convention

In the mango example, you would have noticed that I have given the names of variables as

buy_price, sell_price, total_profit and not as buy price, sell price, total profit, why

so? It turns out that one must follow a certain naming convention or rules when naming a variable.

The rules of naming a variable are as follows

• There must be no space in between variable names

• There must be no special character except underscore _ in a variable name

• A variable name can have numbers

◦ A variable name must not start with a number

• A variable must either start with a character or an underscore

◦ Capital character should not appear at the start of variable

Below given are examples of valid variable names

mango
total_price
mango_
_mango
buyPrice
boeing747
boeing_747
iam23yrsold

Below are given examples of invalid variable names

34signals
Mango
total cost

The underscore – a special variable

Suppose we want to find whats 87 raised to the power 12, we can do as follows

>> 87**12
=> 188031682201497672618081

Now we want to multiply the result with 5 and see the answer, now the above result is a whopy 24 4

digit number and we must type all of it and put a star five to get an answer, thats a lot of work! If

you are a programmer, laziness should flow in your veins otherwise find another profession. One

4 To find number of digits type his in irb: (87**12).to_s.length

18

I Love Ruby 2015 Beta

way is to assign this value to a variable and multiply it by 5 as shown below

>> a = 87 ** 12
=> 188031682201497672618081
>> a*5
=> 940158411007488363090405

However there is another easy way as shown below

>> 87**12
=> 188031682201497672618081
>> _*5
=> 940158411007488363090405

I did find out 87 raised to the power of 12, and after that I multiplies underscore _ with five! But

how come? Underscore is a special kind of variable, in it the result of last execution gets stored

automatically. If you want to use the last obtained output you can do so by using underscore _ as a

variable5.

Constants
Unlike variables, some values must be constant, for example the radius of the Earth is constant, the

speed of light is constant. In problems that deal with these kind of issues, or in situations where you

are absolutely certain that some values wont change, you can use constants.

A constant can be thought as a variable who's value doesn't change. Constants in Ruby starts with a

capital letter, it could then be followed by alphabets, numbers and underscore. Lets now have a

constant called Pi who value will be equal to mathematical pi  , to do so just type the following

in irb prompt

>> Pi = 3.1428
=> 3.1428

Having assigned the value of  to a constant named Pi, we will now try to find area a circle

whose radius is 7 units, so lets use our faithful calculator the irb. We know that radius of a circle is

 r2 6, where r is the circles radius. In your irb prompt we can do the calculation as follows

>> r = 7
=> 7
>> Pi*r**2
=> 153.9972

So we find area of circle is roughly 153.9972 square units, which is very near to the exact value of

154 square units.

5 This underscore as a variable works only in interactive ruby (irb). When you are executing a ruby program typed in
a file this wont work. See section Underscore in Appendix

6 Well I knew it because Albert Einstien is my friend. I just talked to him and he told me the formula for area of circle

19

I Love Ruby 2015 Beta

One can ask weather can we change value of constant? I don't say its impossible, but if we change

ruby gives us warning that we are changing the value of a constant, after the warning the constant

gets changed anyway.

>> Pi=5
(irb):35: warning: already initialized constant Pi
=> 5

In the above example I have re assigned the value of Pi to 5, as you can see in the second line, Ruby

interpreter does throws out a warning that Pi is already initialized constant, but any way the value of

Pi gets changed to 5. It is strongly discouraged not to change values of constants in professional

programming.

Strings
Till now we have seen about numbers, now lets see something about text. In computers text are

called as string7. OK lets see about strings in Ruby. Lets start with an hello world. In your irb type

hello world as shown

>> "hello world"
=> "hello world"

As a response you get an “hello world”. In short, string is any stuff thats surrounded by “ or by '

Now lets try the above example by surrounding the above hello world with single quotes

>> 'hello world'
=> "hello world"

Well you do get the same response. So whats the difference between single and double quotes? Take

a look at the following example

>> time_now = Time.new # Get the current time into a variable
=> Fri Jan 15 16:43:31 +0530 2010
>> "Hello world, the time is now #{time_now}"
=> "Hello world, the time is now Fri Jan 15 16:43:31 +0530 2010"
>> 'Hello world, the time is now #{time_now}'
=> "Hello world, the time is now \#{time_now}"

At first we declare a variable called time_now and store the current time into it. The current time in

Ruby is got by Time.new command. Now we have a variable and we can embed it into a string by

putting it like #{put_your_variable_here}. So we want to tell the world the time now is

something, so we give a command as shown

>> "Hello world, the time is now #{time_now}"
=> "Hello world, the time is now Fri Jan 15 16:43:31 +0530 2010"

7 Possibly because they are string of characters

20

I Love Ruby 2015 Beta

and we get a proper result. Note that you have enclosed the string with a double quotes. Now lets

try the same thing with single quotes

>> 'Hello world, the time is now #{time_now}'
=> "Hello world, the time is now \#{time_now}"

We see that in this case the world is not able to see what time it is, rather its able to see a ugly string

as shown

"Hello world, the time is now \#{time_now}"

What ever thats put between single quotes gets printed as it is. You might ask why # is printed

as \#, well we will see it in escape sequence soon.

String Functions

There are certain cool things you can do with a string with the built in functions and routines packed

into Ruby. For example if I want to find the length of a string I can use the length function as shown

>> "my name is billa".length
=> 16

There are many functions, some of which are given in the table shown. I must warn you that this

table is not comprehensive, you must check the Ruby documentation8 for a comprehensive

coverage.

Input Output Notes

"my name is billa".length 16 The length function finds the

length of a string

"my name is billa".reverse allib si eman ym The reverse function

reverses a string

"my name is billa".capitalize My name is billa Capitalizes the given string

"my name is billa".upcase MY NAME IS BILLA Converts lower case

characters to uppercase

"MY NAME IS BILLA".downcase my name is billa Converts uppercase

characters to lower case

"my name is billa".next my name is billb This is quiet illogical function

that prints the next logical

8 http://www.ruby-doc.org/core-2.1.3/String.html

21

http://www.ruby-doc.org/core-2.1.3/String.html

I Love Ruby 2015 Beta

String

"my name is billa".empty? false Returns true if string is

empty, else returns false

"".empty? TRUE Returns true if string is

empty, else returns false

OK, so we have seen some functions, lets now see what operations can be performed on string. The

first one is concatenation in which two or more strings can be joined together, take a look at

example below

>> "Hello"+" "+"World!"
=> "Hello World!"

In the code above, I have joined three strings “Hello' a (space) “ “and “World!” using a plus sign,

the same operation can be done with string variables too as shown below

>> string_1 = "Hello"
=> "Hello"
>> string_2 = "World!"
=> "World!"
>> string_1+" "+string_2
=> "Hello World!"

OK now, we have studied a lot, a bit of meditation will help, lets chant OM9 to cleanse and reset our

mind. You know Ruby can meditate for you? In your irb type the following

>> "OM "*10

For heaven sake don't type >> ! And here is your result

=> "OM OM OM OM OM OM OM OM OM OM "

The multiplication operator followed by a number prints a string N number of times, where N is the

number given after *.

Escape sequence

Whenever you type a statement like puts “Hello World!” the Ruby interpreter prints Hello

World!. That is every thing between “ and “ gets printed. Well not always. There are some things

that you can put between “ and “ that will escape the normal printing sequence. Launch your irb and

type the example given below:

9 A magical word uttered by saints in India

22

I Love Ruby 2015 Beta

>> puts "Hello \r World!"
 World!
=> nil

Surprise, you see only World! getting printed. What happened to the Hello? Well the \r character

stands for carriage return, which means the Hello does get printed. Then the carriage/cursor returns

to the beginning of the line and World! gets over written on it. Like \r stands for carriage return, \n

stands for newline. Type the example below in irb

>> puts "Hello \n World!"
Hello
 World!
=> nil

As you can see Hello gets printed in first line and World! gets printed in next. This is because we

have placed a new line character \n in between them.

Well now lets take a scenario, we now know that \r, \n and possibly others are non printing

characters. Now how to print \n or \r in our output. As it turns out that putting a double backward

slash would print a backward slash in output as demonstrated by example below.

>> puts "Hello \\n World! => Hello \n World!"
Hello \n World! => Hello
 World!
=> nil

In a similar fashion \t puts tab spaces, where ever they are placed. Try the example below

>> puts "Tabs \t leave\tlong spaces"
Tabs leave long spaces
=> nil

I hope you have understood something about Strings, lets move on......

Using Text Editor
Till now you have keyed in small programs into your irb, when you are developing large software

you can't expect the end user or your clients to keep keying in into the console the statements you

have developed for him / her, instead you will be handing over a typed Ruby program which they

can run it to accomplish certain task. Lets see how to use a text editor to write programs.

Earlier in Installing IDE section I have typed about how to install a simple Integrated Development

Environment (IDE) called Geany. If you are using Ubuntu, press super key, type in Geany, click on

the Geany icon and you will get it.

23

I Love Ruby 2015 Beta

You can use other IDE's too, if want other IDE, refer to their documentation for installation

instructions. In the IDE type the following program

puts "Hello World!"
puts "This time I used text editor"

Now save the file as hello_world.rb in a directory, note that Ruby files ends with .rb (dot rb)

extension. Launch your terminal / console, migrate to the directory where program is stored and

type the following in it

ruby hello_world.rb

and here's how you will get the output.

Hello World!
This time I used text editor

Wonderful! You have learned to program with a text editor, you are getting professional aye!

Printing Something
Study the code hello_world.rb , we have used a Ruby command called puts , this commands

puts something to the output, in this case your terminal window.

puts "Hello World!"
puts "This time I used text editor"

The first line prints Hello World! and the second one prints This time I used a text

editor . What if you want to print two things in the very same line? For it Use the print

command, lets type a new program hello_world_1.rb for it, in your text editor type the following

code

print "Hello World! "

24

https://raw.github.com/mindaslab/ilrx/master/hello_world.rb
https://raw.github.com/mindaslab/ilrx/master/hello_world.rb

I Love Ruby 2015 Beta

print "Once again I used a text editor"

This gives the output:

Hello World! Once again I used a text editor

So you have learned to print something!

Getting Input
A program is more useful when it interacts with the user, lets write a program that asks us our name

and says hello to us. Type the following code (I saved it as say_hello.rb)

puts "Hello I am Zigor, a automated Robot that says Hello"
print "Please enter your name:"
name = gets()
puts "Hello #{name}"

Now run it, this is how the output will look like

Hello I am Zigor, a automated Robot that says Hello
Please enter your name:Karthik
Hello Karthik

Lets walkthru the program

The first line

puts "Hello I am Zigor, a automated Robot that says Hello"

Prints that the program name is Zigor and its a automated robot that wishes you Hello. Then it

prints a line feed, hence the content thats printed then on goes to the next line

The second line

print "Please enter your name:"

prints out “Please enter your name:” , note that we have used print here, not puts because

we want to get the user's name right after name:, I feel it will be awkward if we let them type name

in the next line, so to avoid the line feed I am using print instead of puts.

When the user enters name and presses enter, it is caught by the gets() function and the thing you

typed is stored in the variable called name because of this piece of code

name = gets()

Now all our Zigor needs to do is to wish hello, for which we use this code

puts "Hello #{name}"

25

https://raw.github.com/mindaslab/ilrx/master/say_hello.rb

I Love Ruby 2015 Beta

Notice how we are embedding the variable name into string by putting it between #{ and }. The

same effect can be achieved by using code like this

puts "Hello "+name

But doesn't the former piece of code look better? Its all your choice. Ruby lets you do the same

thing in many ways. You can choose anything that you feel comfortable.

Any way in this topic the line you must be looking at is the one that has gets() method or function,

it waits for a keyboard input, when you give an input and press enter, it takes your input and assigns

the value to variable, in this case the variable is name.

Comments
Comments are small pieces of notes you can put into a program so that you or some one else when

going through the program 7,658 years from now will remember or come to know what its doing.

You may be smart today, but tomorrow you may not be as smart as you are now, your boss or client

who has paid you will yell upon you at that moment to fix a priority bug or to update a software.

You open your dot rb file and see this code

puts "Hello I am Zigor, a automated Robot that says Hello"
print "Please enter your name:"
name = gets()
puts "Hello #{name}"

You might be able to understand it now, but after 7,658 years10? At that time you might have

forgotten Ruby altogether! So start commenting. See the same program comment.rb below, how it

looks like ?

The client is an idiot
he wants me to update a software after 7,658 years.
The hell with him
puts "Hello I am Zigor, a automated Robot that says Hello" # zigor is some 
stupid robot
print "Please enter your name:" # Tells the user to enter his name
name = gets() # gets the user name and assigns it to a variable named name
puts "Hello #{name}" # Embeds name into the string that gets printed

Look at the code above, you have told something about client in the first three lines. These lines

start with a # (hash or check sign). The thing that follows after a check sign is a comment,

comments don't interfere with programs execution but it can be used to provide visual hints to

humans of whats going on in the program.

10 You can live so long if science progresses fast enough. Researches have data to make you live so long! So be
hopeful.

26

https://raw.github.com/mindaslab/ilrx/master/comment.rb

I Love Ruby 2015 Beta

Now lets look at this line

puts "Hello #{name}" # Embeds name into the string that gets printed

here you have #{name} enclosed within double quotes, hences its treated as a embedded ruby code

in a string rather than a comment, whereas # Embeds name into the string that gets

printed is treated as comment.

So I hope you understand that comment can one day help. Professionals always comment when they

write code. They will take pains so that almost any Ruby coder who reads their program will be

able to understand how it woks.

Multiline Comments

If you want to put lot of comments, about the size of a paragraph, then you can put that piece of text

between =begin and =end as shown in the program comments_multiline.rb below

=begin
 The client is an idiot
 he wants me to update a software after 7,658 years.
 The hell with him
=end
puts "Hello I am Zigor, a automated Robot that says Hello" # zigor is some 
stupid robot
print "Please enter your name:" # Tells the user to enter his name
name = gets() # gets the user name and assigns it to a variable named name
puts "Hello #{name}" # Embeds name into the string that gets printed

In the code above note how we put these text:

 The client is an idiot
 he wants me to update a software after 7,658 years.
 The hell with him

between =begin and =end , when you execute the program, those between the =begin and =end

will be ignored. So don't hesitate to write a lot of comment, as now you know there is a way to do it

and it will benefit you and your fellow programmers greatly.

There is one small thing you must know about =begin and =end , that is they must start from the

first column, there should not be any spaces before the = sign, if there is, ruby will think there its a

programming mistake and will signal an error.

27

https://raw.github.com/mindaslab/ilrx/master/comments_multiline.rb

I Love Ruby 2015 Beta

Comparison and Logic

Logical Operators
Logical operators lets you determine weather some thing is true or not. For example one is one,

thats what humans think, lets see what computers think about it. Fire your irb and type one equals to

one as shown

>> 1 == 1
=> true

Well, whats that double equalto sign? A single equal to sign means assignment, for example a = 5 ,

puts value 5 into a. A double equal to sign is comparison. So above we have checked if 1 is equal to

1 and the answer is true. Computers are intelligent, aren't they?

OK, now lets check if 1 equals to 2, so we type 1==2 and....

>> 1 == 2
=> false

The computer (Ruby interpreter in this case) tells its false. Well .. what to say?11

Fine, if 1 is not equal to 2 to a computer when we type it, it must putout true, so type it in your

console

>> 1 != 2
=> true

The != stands for not equal to. The ! Stands for not

Now we check if one is not equal to 1 and the computer as expected gives false as output.

>> 1 != 1
=> false

We now check if 2 is greater than 3, for greater than, we use > sign

>> 2 > 3
=> false

Oh! 2 is not greater than 3, poor poor 2 :-(

Lets get more intelligent here, we will check if 2 is less than 3, for less than we use < sign

>> 2 < 3
=> true

11 Read a mathematical proof that computers do go wrong

28

I Love Ruby 2015 Beta

Cool! We found that if 2 is not greater than 3, then its less than 3. Well we are going to get a Nobel

prize for Math12.

The >= stands for greater than or equal to

>> 5 >= 3
=> true

Since 5 is greater than 3, it returns true

See the expression below, it still returns true because 5 is equal to 5

>> 5 >= 5
=> true

5 is not greater than 5 so it returns false

>> 5 > 5
=> false

3 is less than 5 hence the less than or equal to operator <= returns true

>> 3 <= 5
=> true

3 is equal to 3 hence the less than or equal to operator still returns true

>> 3 <= 3
=> true

3 is not less than 3, its equal to 3 (similar to all humans are equal), hence the less than operator

returns false

>> 3 < 3
=> false

You can also try these with numbers

Operator Meaning

!< Not less than

!> Not greater than

And do they work? ;)

12 When contacted, unfortunately the Nobel committee told me that if I had discovered 2 is less than 3 in 80,000 B.C it
would award me the Nobel prize. Some crack seemed to have discovered it before I did. Any way no problem, if I
can invent a time machine and goto 80,000 BC and announce my great discovery I will get the Nobel. So I might on
or off writing the book as I have to concentrate my energy on inventing Time Machine.

29

I Love Ruby 2015 Beta

true != “true”
In the logic operator section you might see that irb gives true or false as output. You mustn't confuse

with “true” and “false”. The true and false are logical values whereas “true” and “false” are

string.

if
The if keyword is used to execute a statement if a condition is satisfied. Take a look at the program

below. Execute it.

if.rb

puts "Whats your name?"
name = gets.chop
puts "#{name} is genius" if name == "Zigor"
puts "#{name} is idiot" if name != "Zigor"

This is how thee result would be if you give a name other than Zigor

Whats your name?
Karthik
Karthik is idiot

Take a look at the program. Take a look at the following line

puts "#{name} is genius" if name == "Zigor"

The program gets your name in variable called name . Now it checks if the name is Zigor in the

code highlighted above, if yes it executes the statement associated with it, in this case it prints out

that the particular name is genius. It then comes down to next statement

puts "#{name} is idiot" if name != "Zigor"

In this statement it checks if name is not Zigor, if yes it prints the name is idiot.

if else
Lets write the who's genius program in another form, here we use if else condition instead of if.

Take a look at the code below named if_else.rb

Zigor says if the person is intelligent or not
print "Enter your name: "
name = gets.chop
if name == "Zigor"

puts "#{name} is intelligent"
else

puts "#{name} is idiot"
end

30

https://raw.github.com/mindaslab/ilrx/master/if_else.rb
https://raw.github.com/mindaslab/ilrx/master/if.rb

I Love Ruby 2015 Beta

The program when executed gives the same output as previous if.rb , whats different is how the

logic is represented inside the program. We see a thing called if name == "Zigor" , then what

has to be executed if the code is true comes after that as shown

if name == "Zigor"

puts "#{name} is intelligent"

Now we can put any number of statements after that if and all will be executed if the condition

given is satisfied. Fine till now, but how will Ruby know where the if statement gets over? To say

that things end here we put an end keyword as shown.

if name == "Zigor"
puts "#{name} is intelligent"

end

Lets say that that condition(s) given in the if is not satisfied and we need to do something if

condition is invalid, then we put those statements that gets executed when conditions fails under the

else keyword as shown

if name == "Zigor"
puts "#{name} is intelligent"

else
puts "#{name} is idiot"

end

Note that the else and statements that needs to be executed when condition fails comes before the

end statement. The end marks the end of if else block. Its not always necessary to have else,

instead we could have a code as shown

if <condition>
many lines of code goes here

end

In the above you can put many lines of code that needs to be executed inside a if … end block.

elsif
When we use if and else, the code under if gets executed if the condition is satisfied, else the

code under else section gets executed. Lets have a new scenario where the code under if is not

satisfied, then the program immediately jumps to the else section, now the logic demands that we

need to check another condition at the else level too, what should we do? To deal with such a

scenario we can use the elsif command. Take a look at the code below

elsif.rb
finds the greatest of three numbers

31

https://raw.github.com/mindaslab/ilrx/master/elsif.rb
https://raw.github.com/mindaslab/ilrx/master/if.rb

I Love Ruby 2015 Beta

a,b,c = 3,7,5

if a >= b and a >= c
puts "a = #{a} is greatest"
elsif b >= c and b >= a
puts "b = #{b} is greatest"
else puts "c = #{c} is greatest"
end

When executed it produces the following result

b = 7 is greatest

Lets walkthru the code step by step. Lets look at the line

a,b,c = 3,7,5

In this line we assign values 3, 7 and 5 to variables a,b and c. Lets now come to the if statement

if a > b and a > c

In this statement we check if a is greater than b and if a is greater than c. Note the keyword and.

The if condition is satisfied only if both conditions are true. a is less than b hence this condition

fails so program skips the if statement and comes to the elsif statement

elsif b > c and b > a

elsif is else plus if, here we check on another two conditions thats separated by and, we check if

b is greater than a and if b is greater than c, both are true and hence the statement under elsif

puts "b = #{b} is greatest"

gets executed and we get the result. Since the elsif is satisfied other else and the code that comes

under it is ignored.

unless
Unless is another way to check a condition. Let say that one is not a major and is considered a child

unless he or she is less than 18 years old. So how to code it in Ruby? Consider the program below,

type it in a text editor and execute it.

unless.rb
print "Enter your age:"
age = gets.to_i
p "You are a minor" unless age >= 18

When executed this is what we get

Enter your age:16
"You are a minor"

The program asks your age, it says you are minor if age is not greater than 18. That is it says you

are a minor if unless your age is greater than or equal to 18 (see the highlighted code). The p is a

32

https://raw.github.com/mindaslab/ilrx/master/unless.rb

I Love Ruby 2015 Beta

kind of short form for puts13. If you write puts “something” , the ruby interpreter prints

something. If you use p ”something” , the ruby interpreter prints ”something”.

If we want to put more than a line of code under an unless block we can use unless end block as

shown below

unless <condition>
many lines of code goes here

end

The code in the block gets executed if the <condition> fails. unless can be thought as opposite of

if. A if block gets executed if the condition in it is true, a unless block gets executed if the

condition in it is false.

unless else
Just like if with else, we can have else in an unless statement. Type in the program below and

execute it

unless_1.rb
print "Enter your age:"
age = gets.to_i
unless age >= 18

p "You are a minor"
else p "You are a grown up"

end

This is what you get when you execute it

Enter your age:37
"You are a grown up"

OK, here is how it works , you get your age, convert it into integer and store it in a variable called

age. Concentrate on the highlighted code, unless the age is less than 18 “You are a minor”

doesn't get printed out. If the age is greater than or equal to 18 it gets routed to the else statement

and “You are a grown up” gets printed. Note that if we use else with unless we must terminate

the unless block with an end command.

Lets now look at another program that uses the unless else. We want to hire people for armed

forces, the person should be between 18 and 35 years of age, our program asks the details from a

person who wishes to enroll, it checks his age and tells the result. Type the program below and

execute it

13 This isnot the right definition, but just remember it in that way

33

https://raw.github.com/mindaslab/ilrx/master/unless_1.rb

I Love Ruby 2015 Beta

unless_2.rb
print "Enter your age:"
age = gets.to_i
unless age < 18 or age > 35

p "You can enter Armed forces"
else p "You cannot enter Army. You are either too young or too old"

end

When executed this will be the result

Enter your age:23
"You can enter Armed forces"

I think you can explain this program on your own. If else contact me, I will write an explanation

unless I am lazy.

case when
Suppose you want to write a program that has a determined output for determined input, you can

use the case when. Lets say that we want to write a program that spells from 1 to 5, we can do it as

shown in case_when.rb , type the program in text editor and execute it.

case_when.rb
This program spells from one to five

print "Enter a number (1­5):"
a = gets.to_i
spell = String.new

case a
when 1
spell = "one"
when 2
spell = "two"
when 3
spell = "three"
when 4
spell = "four"
when 5
spell = "five"
else
spell = nil

end

puts "The number you entered is "+spell if spell

Output

Enter a number (1­5):4
The number you entered is four

Lets see how the above program works. First the user is prompted to enter a number, when he does

enters a number, it gets converted from String to Integer in the following statement

34

https://raw.github.com/mindaslab/ilrx/master/case_when.rb
https://raw.github.com/mindaslab/ilrx/master/unless2.rb

I Love Ruby 2015 Beta

a = gets.to_i

The variable a now contains the value of number we have entered, we have the case statement as

shown

case a
…......

end

In the above empty case statement we are going to write code that gets executed depending on the

value of a. When a is 1 we need to spell out as “one” so we add the following code

case a
when 1
spell = "one"

end

Similarly we add code till the case is 5 as shown

case a
when 1
spell = "one"
when 2
spell = "two"
when 3
spell = "three"
when 4
spell = "four"
when 5
spell = "five"

end

There could be a case when the human who runs this program could give a wrong input, so we need

to deal with those cases too. For that we add a special statement called else, if all the when cases

fails, the code under else is executed, it must however be noted that its not mandatory to have an

else between case … end block. So now the program changes as shown

case a
when 1
spell = "one"
when 2
spell = "two"
when 3
spell = "three"
when 4
spell = "four"
when 5
spell = "five"
else
spell = nil

end

Next all we must do is to print out spell which we do it in the following statements

puts "The number you entered is "+spell if spell

35

I Love Ruby 2015 Beta

Note that we print out only if spell contains a value, else if spell is nil nothing is printed. It is

taken care by the if condition thats been highlighted above.

Sometimes it might be necessary that we need to execute same set of statements for many

conditions. Lets take a sample application in which the program determines a number from 1 to 10

(both inclusive) is odd or even. Type the code below (case_odd_even.rb) and execute it

case_odd_even.rb

num = 7 # put any number from 1 to 10

case num
when 1, 3, 5, 7, 9
puts "#{num} is odd"
when 2, 4, 6, 8, 10
puts "#{num} is even"

end

Output

7 is odd

Notice that in above program we assign a value 7 to a variable num, next we put the num in a case

statement. When the number is 1, 3, 5, 7 and 9 we need to print its odd so all we do is to group the

cases. When its satisfied it must print as odd, for that its just enough if you put it as shown in

highlighted code below

case num
when 1, 3, 5, 7, 9
puts "#{num} is odd"

end

Next all we need to print the number is even if its 2, 4, 6, 8 and 10, to do this task all we need to do

is to add code that highlighted below

case num
when 1, 3, 5, 7, 9
puts "#{num} is odd"
when 2, 4, 6, 8, 10
puts "#{num} is even"

end

Thats it. The code will work fine for all numbers from 1 to 10. The moral of the story is we can

easily group cases and execute a common code under it.

? :
The ? : is called tertiary operator. It can be used as a simple if. Take the program shown below.

Concentrate on the highlighted code below

36

https://raw.github.com/mindaslab/ilrx/master/case_odd_even.rb

I Love Ruby 2015 Beta

max_of_nums.rb

a,b = 3,5
max = a > b ? a : b
p "max = "+max.to_s

When executed the program gives the following output

"max = 5"

Well the ?: works as follows. It syntax is like this

<evaluate something > ? <if true take this thing> : <if false take this thing>

You give an expression before the question mark. This expression must either return true or false. If

the expression returns true it returns the stuff between ? and : , if false it returns the stuff after :

In the expression

max = a > b ? a : b

We can substitute the values of a and b as follows

max = 3 > 5 ? 3 : 5

3 is not greater than 5, hence its false. Hence the value after : is assigned to max. Hence max

becomes 5.

Assigning logic statement to variables

Wonder weather you noticed or not, in previous example max_of_nums.rb we have used a

statement like this

max = a > b ? a : b

Here a > b is logic , if its true it would return a which gets assigned to max or it returns b which

gets assigned to max.

Now the same program can be written as follows

max_of_nums_with_if.rb

a,b = 3,5
max = if a > b
 a
else
 b
end
p "max = "+max.to_s

Output

37

https://raw.github.com/mindaslab/ilrx/master/max_of_nums_with_if.rb
https://raw.github.com/mindaslab/ilrx/master/max_of_nums.rb
https://raw.github.com/mindaslab/ilrx/master/max_of_nums.rb

I Love Ruby 2015 Beta

"max = 5"

Just take a look at highlighted code part. Here the variable max is assigned to an if condition. So if

a is greater than b it will put a into max else it will put b in max. As simple as that.

Now there is another stuff. What if there are more statements under if or else ? Since in this code

block

max = if a > b
 a
else
 b

end

there is only one statement under if block that is a, and under else block we just have b , so its

straight forward. Now lets try out the example given below

max_of_nums_with_if_many_statements.rb

a,b = 3,5
max = if a > b
 a+b
 a
else
 a­b
 b
end
p "max = "+max.to_s

Run the above program and this is what you get

"max = 5"

So what to infer? The rule is this, if you give many statements in a block and assign it to a variable,

the out put of the last statement will get returned and will be put into the variable14 (max in this

case).

Here is another program , a fork of case_when.rb , I guess you know how it works now

case_when_2.rb
This program spells from one to five

print "Enter a number (1­5):"
a = gets.to_i
spell = String.new

spell = case a
 when 1

 "one"

14 You many understand it well when you are reading about functions

38

https://raw.github.com/mindaslab/ilrx/master/case_when_2.rb
https://raw.github.com/mindaslab/ilrx/master/case_when.rb
https://raw.github.com/mindaslab/ilrx/master/max_of_nums_with_if_many_statements.rb

I Love Ruby 2015 Beta

 when 2
 "two"

 when 3
 "three"

 when 4
 "four"

 when 5
 "five"

 else
 spell = nil

end

puts "The number you entered is "+spell if spell

Run it and see it for yourself.

39

I Love Ruby 2015 Beta

Loops
At times you might need to do some repetitive task lets say that I want to write a rocket countdown

program, I want to create a automated robot that count down for rockets, when the count is finished

it says “Blast Off”, lets write one and see

count_down.rb

Zigor tells about itself
puts "Hello, I am Zigor...."
puts "I count down for rockets"
Count down starts
puts 10
p 9 # p is a short form for puts
p 8
p 7
p 6
p 5
p 4
p 3
p 2
p 1
p "Blast Off!"

Well I hope you understand the program above. There is one thing I would like to explain, p is a

short form of puts, rather than writing puts one can use p and get the same result15. The above

program when run prints the following

Hello, I am Zigor....
I count down for rockets
10
9
8
7
6
5
4
3
2
1
"Blast Off!"

So a perfect execution, but we can make this more efficient to code, we will soon see how

15 Well, almost.

40

https://raw.github.com/mindaslab/ilrx/master/count_down.rb

I Love Ruby 2015 Beta

downto
In your text editor type the following program

count_down_1.rb

Zigor tells about itself
puts "Hello, I am Zigor...."
puts "I count down for rockets"
Count down starts
10.downto 1 do |num|

p num
end
p "Blast Off!"

Run it and see. Well your program uses now a lot less code and yet it produces the same result! To

know how the program runs, look at the code highlighted, notice the thing 10.downto 1 , this

statement make Zigor count down from 10 to 1 , while it count downs you can do some thing with

the countdown value , you can put some code in the loop block. The loop starts with a do and ends

when it encounters a end command. Any code you put should be between the do and end block16 as

shown below

10.downto 1 do
do some thing! Anything!!

end

So between the do and end (technically its called a block) you can put the code to print the count

down number. First how to get the number? we will get it in a variable called num , so we rewrite

the code as shown

10.downto 1 do |num|
put the printing stuff here

end

Notice above that num is surrounded by | and | . All we need to do now is to print it, so we just print

it!

10.downto 1 do |num|
p num

end

times
times is a very simple loop, if you want to get a code executed N number of times you put the code

in it. Now lets see what Zigor knows

times.rb

16 You can use open and closed flower / curly brackets { and } instead of do and end in Ruby

41

https://raw.github.com/mindaslab/ilrx/master/times.rb
https://raw.github.com/mindaslab/ilrx/master/count_down_1.rb

I Love Ruby 2015 Beta

puts "Hi, I am Zigor"
puts "I am going to tell what I know"
7.times{

puts "I know something"
}

Well when executed the program prints the following

Hi, I am Zigor
I am going to tell what I know
I know something
I know something
I know something
I know something
I know something
I know something
I know something

Zigor tells that it knows something seven times.

OK we have made changes in the program, we are printing the count variable this time, type the

program below and execute

times_1.rb

puts "Hi, I am Zigor"
puts "I am going to tell what I know"
7.times{ |a|

puts "#{a}. I know something"
}

Here is what you get the result

Hi, I am Zigor
I am going to tell what I know
0. I know something
1. I know something
2. I know something
3. I know something
4. I know something
5. I know something
6. I know something

Why its counting from zero to six rather than one to seven? Well if all happens as you want, there

will be no need of programmers like you and me, so don't bother. Notice that in these programs we

use { and } rather than do and end. Well, Ruby encourages different styles of programming.

upto
upto counts some number upto some other number. Its like downto in reverse. Type in the program

below and execute it

upto.rb

42

https://raw.github.com/mindaslab/ilrx/master/upto.rb
https://raw.github.com/mindaslab/ilrx/master/times_1.rb

I Love Ruby 2015 Beta

upto is downto in reverse
17.upto 23 do |i|

print "#{i}, "
end

And here is how the output looks like

17, 18, 19, 20, 21, 22, 23,

step
step loop can be thought as combination of upto and downto all packed in one, execute the code

shown below

step _1.rb
explains step function
1.step 10 do |i|
 print "#{i}, "
end

and here is the result. This is very similar to upto! Don't you see!!

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

Now lets modify the program as shown below and save it in another name

step _2.rb
explains step function
10.step 1 do |i|
 print "#{i}, "
end

When executed this program produces no output. What have we done wrong? Modify the program

as shown below and run it

step_3.rb
explains step function
this time its stepping down
10.step 1, ­1 do |i|
 print "#{i}, "
end

Well here is the output of the program

10, 9, 8, 7, 6, 5, 4, 3, 2, 1,

What goes on in step? step receives three inputs, consider the code shown below

10.step 1, ­1

The first one is the number that calls step is taken as the initial number, in the above case it is 10.

Next is the ending number in this case it is 1, that is this function counts from 10 to 1, we must

descend in this case, so the count must be in steps of -1.

I can modify the same program to print even numbers in 10 to 1 as shown

43

https://raw.github.com/mindaslab/ilrx/master/step_3.rb
https://raw.github.com/mindaslab/ilrx/master/step_2.rb
https://raw.github.com/mindaslab/ilrx/master/step_2.rb
https://raw.github.com/mindaslab/ilrx/master/step_1.rb
https://raw.github.com/mindaslab/ilrx/master/step_1.rb

I Love Ruby 2015 Beta

step_4.rb
explains step function
this time its stepping down
p "Even numbers between 10 and 1:"
10.step 1, ­2 do |i|

print "#{i}, "
end

This program prints the following output

“Even numbers between 10 and 1:”
10, 8, 6, 4, 2,

Lets now try a program that will print even numbers from 1 to 10, this time in ascending order

step_5.rb
explains step function
this time its stepping upby two counts each loop
p "Even numbers between 1 and 10:"
2.step 10, 2 do |i|

print "#{i}, "
end

Output

“Even numbers between 1 and 10:”
2, 4, 6, 8, 10,

See the highlighted or darkened code above. We have started from 2,we will end at 10 and we jump

each loop by steps of 2. Inside the loop we simply print the iterating value which is captured in

variable i.

while
While17 loop is a loop that does something till a condition is satisfied. Read the code below

while .rb
i=1
while i<=10 do

print "#{i}, "
i+=1

end

when executed, it produces the following output.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

Lets now see how an while loop works. A while loop normally has four important parts

1. Initialization

2. Condition check

17 Kinda like this, while with a beautiful girl don't fart

44

https://raw.github.com/mindaslab/ilrx/master/while.rb
https://raw.github.com/mindaslab/ilrx/master/while.rb
https://raw.github.com/mindaslab/ilrx/master/step_5.rb
https://raw.github.com/mindaslab/ilrx/master/step_4.rb

I Love Ruby 2015 Beta

3. Loop body

4. Updation

Initialization

See the statement i=1 , here we initialize a variable named i and set it to value 1.

Condition check

See the statement while i<=10 , in this statement we specify that we are starting a while loop, this

while loop on every iteration checks the value of i , if its less than or equal to 10 , the loops body

gets blindly executed.

Loop body

Notice the do and end in the program. They encapsulate a piece of code. The do symbolizes the

start of loop code block, the end symbolizes the end of loop code block. Between it we have some

statements about which we will discuss soon. One of the statement is to print the value of i, which

is accomplished by print "#{i}, "

Updation

Lets say that we forgot to include i+=1 in the loop body, at the end of each iteration the value of i

will always remain 1 and i will always remain less than 10 hence the loop will be executed infinite

number of times and will print infinite 1's, . In practical terms your program will crash with possible

undesirable consequence. To avoid this we must include a updation statement. Here we have put

i+=1 which increments i by value one every time an iteration continues, this ensures that i<=10 to

become false at some stage and hence the loops stops execution18.

Hence we see that for a loop to work in an desirable manner we need to get these four parts into

symphony.

until
while loop keeps going until a condition becomes false, until loop keeps going until a

condition becomes true. Read the code below, type it in a text editor and execute it.

18 Some cases a loop might be let to run infinite times (theoretically). Currently those things are outside the scope of
this book.

45

I Love Ruby 2015 Beta

until .rb
i=1
until i>10 do

print "#{i}, "
i+=1

end

This is what you will get as result

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

So how this loop works? At first we do set i=1 , then we use the until command and say that until i

is greater than 10 keep doing some thing (look at the highlighted code). What should be done is said

between the do and end key words. So till the condition fails, the code in loops body will be

executed, so we get 1 to 10 printed as output.

break
Suppose you want to break away from loop, you can use the break command. An example is given

below. In the example we will break if the iterating variable i becomes 6. So numbers ranging only

from 1 to 5 gets printed. When i becomes 6 the loop breaks or terminates

#break.rb

1.upto 10 do |i|
break if i == 6
print "#{i}, "

end

When executed, the above program produces the following output

1, 2, 3, 4, 5,

next
break , breaks out of loop and terminates it. next is some what different from break , instead of

breaking from the loop, its a signal to continue the loop without executing statements that occurs

after next. Here is a example for you to understand it

next.rb

This loop won't print 6
10.times do |num|

next if num == 6
puts num

end

Output
0
1

46

https://raw.github.com/mindaslab/ilrx/master/next.rb
https://raw.github.com/mindaslab/ilrx/master/break.rb
https://raw.github.com/mindaslab/ilrx/master/until.rb
https://raw.github.com/mindaslab/ilrx/master/until.rb

I Love Ruby 2015 Beta

2
3
4
5
7
8
9

If you notice the output, you see that numbers from 0 to 9 are printed, but there is no 6. Notice the

highlighted line in next.rb , we see a statement next if num == 6 , here if num is 6, next is

executed, in other words all lines after that in the do end block is skipped. Unlike brake , the loop

is not terminated, but just the lines after next is skipped.

redo
There is another type thing called redo. next skips any execution further and the iterating variable is

incremented / decremented to next possible value19, redo on other hands skips further execution of

code in the loop block, but the iterating variable is not incremented, instead the loop is rerun. Type

the code below and execute it in the browser

redo.rb

5.times do |num|
puts "num = #{num}"
puts "Do you want to redo? (y/n): "
option = gets.chop
redo if option == 'y'

end

Run it and hopefully you can explain it by yourself ;-)

loop
So we have seen many types of loops till now, but I have left out a basic loop which is we call as

loop loop. Why I have left it out Because its dangerous to use20. Okay lets see an example. Type the

program below and execute it. Note that you need to press Ctrl+C to stop it executing. So be

cautious

loop.rb

19 Its not right to think that next will increment iterating value by 1. Checkout
https://raw.github.com/mindaslab/ilrx/master/next_with_step.rb and try it.

20 If you run this loop a million times then it will automatically trigger nuclear warheads in Area 51. This will make
Russia counteract thus unleashing a nuclear Armageddon

47

https://raw.github.com/mindaslab/ilrx/master/loop.rb
https://raw.github.com/mindaslab/ilrx/master/redo.rb
https://raw.github.com/mindaslab/ilrx/master/next_with_step.rb

I Love Ruby 2015 Beta

loop do
 puts "I Love Ruby"
end

Output

I Love Ruby
I Love Ruby
I Love Ruby
I Love Ruby
I Love Ruby
I Love Ruby
I Love Ruby
I Love Ruby
I Love Ruby
I Love Ruby
I Love Ruby
......

The output will keep on printing "I Love Ruby" until u press Ctrl and C keys to break. The basic is

this: Anything put between loop do and end will keep on going.

So now lets say that we don't want this loop to be continuously running for ever. Lets see how to

tame it. Lets print a program that prints from 1 to 10. Type the program below and run it .

break_at_10.rb

i = 1
loop do
 puts i
 break if i == 10
 i = i+1
end

Output

1
2
3
4
5
6
7
8
9
10

So the program prints from 1 to 10 as I wished. Lets walk through it and see how it works. The first

line i = 1 , stores the value 1 in variable named i. Next we have this loop do line where any thing

put between this and end will run continuously.

In the next line puts i , we print the value of i and hence 1 gets printed, now in break if i ==

48

https://raw.github.com/mindaslab/ilrx/master/break_at_10.rb

I Love Ruby 2015 Beta

10 , it checks if i is 10, here the condition is false hence the loop will continue to the next statement

i = i+1 , we are adding 1 to i in i+1 and hence its becomes 2 so by saying i = i+1 we mean i =

1+1 hence i will become 2 and it (the program) meets the end statement, it does not mean end the

program but the loop block has got over so return back to top (that is to loop do).

So in loop do, now i is 2, so the thing goes on and on till i is 10 and in that case, in break if i

== 10 , i == 10 becomes true and the loop breaks.

Exercise: Try modifying the break_at_10.rb , when we have finished printing 10 , the program

must print "Mom I have finished printing 10"

Answer: telling_mom.rb

Exercise: These western guys don't like 13, so write a program to print from 1 10 20, but omit 13.

Answer: no_13.rb

Exercise: Explain if no_13_a.rb will work. If ya, how? If nay, why not?21

21 If you can't find out, you will know it on 13-14-2015 AD, thats the judgement day. God will descend upon earth and
give answer to this ultimate question. If you want to know watch “The Hitchhiker's Guide to the Galaxy” which
contains a very secret message. DONTPANIC.

49

https://raw.github.com/mindaslab/ilrx/master/no_13_a.rb
https://raw.github.com/mindaslab/ilrx/master/no_13.rb
https://raw.github.com/mindaslab/ilrx/master/telling_mom.rb
https://raw.github.com/mindaslab/ilrx/master/break_at_10.rb

I Love Ruby 2015 Beta

Arrays
Arrays can be considered as a rack. You can keep any thing22 in a rack, in a similar way you can

keep any thing in an array. A rack contains many shelfs or compartments. If you can count them,

you can put numbers on each compartment, the rack can be considered an array of space to store

some thing. Each compartment can be identified by a number and hence it becomes easy to identify

it. An array is a rack thats available to a programmer. Lets see an example to learn more. Type the

program below and execute it

array.rb

my_array = []
my_array << "Something"
my_array << 123
my_array << Time.now

my_array.each do |element|
puts element
end

This is how you will get the output

Something
123
Tue Feb 02 18:10:06 +0530 2010

Lets walkthru the program, take the line my_array = [] , in it we declare an array called

my_array, its an empty array that has got nothing in it. [] denotes an empty array and we assign

my_array to it. Having done so we populate it with some values in the following statements

my_array << "Something"
my_array << 123
my_array << Time.now

We append elements to an array. In the first statement we append a string constant “Something”, in

the second statement we append a integer 123 and in the third statement we append the current time.

If you have guessed it right, we have used << operator to append the array.

Till now we have created an array called my_array and have put something into it. Now we have to

see what we have put in. To do so we use <array_name>.each (array name dot each). This method

extracts each element of an array. So for my_array we use

my_array.each

22 Things are called objects and classes in programming

50

https://raw.github.com/mindaslab/ilrx/master/array.rb

I Love Ruby 2015 Beta

OK we have to do some thing with each element of an array. To do so we add a do … end, within

it we can do something, so our code gets transformed as

my_array.each do
end

We have to capture each element of an array into a variable, lets use a variable named element to

do the job, so we capture each element using the following code

my_array.each do |element|

end

Notice how we put our element variable between | and |. We have captured each and every

element of an array, what to do now? We will print it using a puts statement. So our array gets

printed successfully. The following program too works the same way as previous program, but we

use Array.new instead of [] to say that my_array is an array23

array_1.rb

my_array = Array.new
my_array << "Something"
my_array << 123
my_array << Time.now

my_array.each do |element|
puts element
end

I will write another program that will use the for construct to iterate over each element of an array

as shown below

array_2.rb

my_array = Array.new
my_array << "Something"
my_array << 123
my_array << Time.now

for element in my_array
puts element

end

Output

Something
123
2012­08­10 19:19:47 +0530

There is a third way of creating an array. Take a close look at the program below. Look at the

darkened statement. Look at it carefully, we have my_array thats an variable to which we assign an

23 That is Array.new returns an empty array, thats get sored in variable my_array

51

https://raw.github.com/mindaslab/ilrx/master/array_2.rb
https://raw.github.com/mindaslab/ilrx/master/array_1.rb

I Love Ruby 2015 Beta

array, its been set to ["Something", 123, Time.now]. That is in this case we declare and

added array elements to my_array in the same statement. Note that we put elements of an array in

square brackets, this is another way of declaring array. So the program array_3.rb works exactly

same as array_1.rb and array.rb, but its more concise. Unlike many languages, Ruby lets the

programmer choose his own style of coding.

array_3.rb

my_array = ["Something", 123, Time.now]
puts my_array.join("\n")

Result

Something
123
Wed Feb 03 17:37:36 +0530 2010

Till the last example we were using each to iterate throgh aarray elements, now we will use a new

kind of loop which is the for loop, so here is a code for that

array_for.rb

my_array = Array.new
my_array.push("Something")
my_array.push 123
my_array << Time.now

for element in my_array
 puts element
end

Output

Something
123
2014­11­12 10:37:22 +0530

See the highlighted part in the code which is this

for element in my_array
 puts element
end

Notice this particular line for element in my_array . This is just equivalent to my_array.each

|element| in previous examples. For loop I personally feel is a bit elegant. So just like each, each

element in my_array gets loaded into element and this is available in the loop block for the

programmer to make us of it. Here we just print it using puts element .

52

https://raw.githubusercontent.com/mindaslab/ilrx/master/array_for.rb
https://raw.github.com/mindaslab/ilrx/master/array_3.rb

I Love Ruby 2015 Beta

More on Array
Lets now see some array functions. For this we will be using our favorite irb rather than a text editor

>> array = Array.new
=> []

OK in the above statement we see that we create an Array named array using Array.new .

Array.new creates an empty array.

There is another way to create an array. We can create it by directly specifying the values that are

contained in an array as shown

>> array = ["Something", 123, Time.now]
=> ["Something", 123, Tue Feb 02 20:30:41 +0530 2010]

In the above statement, we create an array with three objects in it. The value that must be in an array

is given between square brackets [and]. Each object in array is separated by a comma. By

providing no values between [and] we can even create an empty array as shown

>> array = []
=> []

In the above example the empty [] does the same job as Array.new .

Lets create array with parameters with Array.new as shown

>> array = Array.new("Something", 123, Time.now)
ArgumentError: wrong number of arguments (3 for 2)

from (irb):3:in `initialize'
from (irb):3:in `new'
from (irb):3
from :0

As you see above it fails! Don't use it that way.

OK, lets now try some thing on the array, first to get how many elements are in the array we can use

the length function as shown below:

>> array.length
=> 3

The join function joins many array elements together and returns it. So when our array element is

joined this is what we get as result:

>> array.join(', ')
=> "Something, 123, Tue Feb 02 20:30:41 +0530 2010"

Note that we pass a string ', ' to the join, when the array elements are joined as a string the, string we

passed gets inserted into them in between.

53

I Love Ruby 2015 Beta

We have created an array and we have something in it, what if we want to add something to it? To

do so we use the push method. In the example below, we push a number 5 into the array and as we

see the array gets expanded and 5 is appended to the array at the last.

>> array.push(5)
=> ["Something", 123, Tue Feb 02 20:30:41 +0530 2010, 5]

The pop method does the opposite of push, it pops out or removes the last element of array. See the

example below, we pop an element and the last element which is 5 gets popped out.

>> array.pop
=> 5

After popping it out lets see whats in the array

>> array
=> ["Something", 123, Tue Feb 02 20:30:41 +0530 2010]

We see that the array size has reduced by one and last element 5 is missing.

Its not that you must only give a fixed values in push, you can give variables and Ruby expressions

and any object to the push as argument. You can see below that we are pushing 2 raised to the

power of 10 to the array and 1024 gets added to the array at the last.

>> array.push 2**10
=> ["Something", 123, Tue Feb 02 20:30:41 +0530 2010, 1024]

Array elements are indexed. The first element of an array has a index number 0 and its goes on

(theoretically till infinity). If one wants to access element at index n24, all he needs to do is to put

the index number in between square brackets. In the example below we access the third element in

the array named array so we type it as follows

>> array[2]
=> Tue Feb 02 20:30:41 +0530 2010

The pop method too accepts a Fixnum25 as an argument which it uses to pop all elements starting

from that index and further.

>> array.pop(2)
=> [Tue Feb 02 20:30:41 +0530 2010, 1024]
>> array
=> ["Something", 123]

As you see the third element gets popped out, so popping at random is possible.

We can push many elements into an array at once. Consider the code snippet below

>> array.push 5, "Who am I?", 23.465*24
=> ["Something", 123, 5, "Who am I?", 563.16]

24 n is a number, but wait isn't it a letter?
25 A number

54

I Love Ruby 2015 Beta

We first push 3 new elements into the array and so we get a bigger one.

Now we pop all elements who's index number is 3 and above by giving array.pop 3

>> array.pop 3
=> [5, "Who am I?", 563.16]

As you can see the array size is reduced and it now only has two elements.

>> array
=> ["Something", 123]

There is another way to append elements in an array, its by using the double less than operator <<,

let push some elements into the array with it as shown:

>> array << "a new element"
=> ["Something", 123, "a new element"]
>> array << 64
=> ["Something", 123, "a new element", 64]

as you see above we have appended a String constant “a new element” and 64 to the array using

<< operator.

You can find maximum and minimum values in an array using the max and min function as shown:

>> nums = [1, 2, 64, ­17, 5 ,81]
=> [1, 2, 64, ­17, 5, 81]
>> nums.max
=> 81
>> nums.min
=> ­17

As you see in above example we create a array called nums having some numbers, nums.max

returns the maximum value in that array and nums.min returns the minimum value in that array.

Set operations
For those who know set theory you must know about intersections, unions and blah blah. I read

about set theory when in school and now have forgotten about it. You can treat array as set and do

many operations on it. Here are a few examples which I tried out on irb

Lets take a college volleyball team, in it are some people names Ashok, Chavan, Karthik, Jesus and

Budha. If you take a list of cricket team there are Budha, Karthik, Ragu and Ram. Lets now code it

in ruby. To have a collection of people who play in volleyball team we create an array as shown

>> volleyball=["Ashok", "Chavan", "Karthik", "Jesus", "Budha"]
=> ["Ashok", "Chavan", "Karthik", "Jesus", "Budha"]

In a similar way we create another array that contains names of those who play in cricket team as

shown

55

I Love Ruby 2015 Beta

>> cricket=["Budha", "Karthik", "Ragu", "Ram"]
=> ["Budha", "Karthik", "Ragu", "Ram"]

So we have two sets of people. Now to find out who are in volley ball and cricket, all we need to do

is to AND (or take intersection of) both arrays using the & operator as shown

>> volleyball & cricket
=> ["Karthik", "Budha"]

As you see from above code snippet, the & (and) operator sniffs out those elements that are there in

both arrays. In mathematics this stuff is called intersection.

Lets say in another situation we would like to find out all those who are both in volleyball and

cricket team. To do so we use the or operator | . Lets now apply it

>> volleyball | cricket
=> ["Ashok", "Chavan", "Karthik", "Jesus", "Budha", "Ragu", "Ram"]

As you see we get names of those who are in volleyball and cricket team. The | (or) operator is

different from the + (plus) operator. Lets add volleyball and cricket teams

>> volleyball + cricket
=> ["Ashok", "Chavan", "Karthik", "Jesus", "Budha", "Budha", "Karthik", "Ragu",
"Ram"]

As you can see from above code snippet the names Karthik and Budha are duplicated. This does not

happen when we use the | (OR) operator.

Lets now find that which players play only for the volleyball team. For this we will minus the

players of cricket from the volleyball team using the – (minus) operator as shown

>> volleyball ­ cricket
=> ["Ashok", "Chavan", "Jesus"]

So we see three players are exclusively in volleyball team. So if you are a mathematician you will

feel some what comfortable with Ruby.

Empty array is true
There is another stuff that must be known by a Ruby dev. It regarding conditions and empty array.

Fire up your irb and type these

>> puts "A" if []
A
=> nil

If you see, the statement prints A even if the array passed to the if statement is empty. This is kinda

against theory of least surprise, but not to get surprised imagine this. There is a book rack, and there

56

I Love Ruby 2015 Beta

are books in it so if you give a statement like this

>> puts "Books Present" if ["treasure island", "I Love Ruby"]
Books Present
=> nil

It does print Books Present as expected. But in this thing

>> puts "Books Present" if []
Books Present
=> nil

It still prints Books Present. Thats because even though the book rack is empty, there is a rack

which is still an object. So there is some thing thats not nil. So its true. To make sure this is how it

works take a look at the code below

>> nil.class
=> NilClass
>> [].class
=> Array

When we query whats the class of nil, it says its NilClass which is actually a empty thing. But

when we query the class of an empty array its still an Array, which is not nil and hence true. To

check for empty array that must fail a condition use the following code

>> puts "A" unless [].empty?
=> nil
>> puts "A" if [].first
=> nil

In the first one [].empty? returns true, but since its in unless it would fail to execute the

statement dependent on it.

If you see the second one we use [].first , this returns nil. Try it in irb

>> [].first
=> nil

So this could also be used to check emptiness of an array. Or is it so..... ?

>> a= [nil, 1, 2, nil]
=> [nil, 1, 2, nil]
>> puts "a is empty" if a.first
=> nil
>> puts "a is not empty" if a.first
=> nil
>> puts "a is not empty" unless a.empty?
a is not empty
=> nil

Ha ha haaaa.......

57

I Love Ruby 2015 Beta

Hashes and Symbols
Hashes are arrays with index defined by the program or user and not by the Ruby interpreter. Lets

see a program to find out how hashes work. Type the following program (hash.rb) into your text

editor and execute it.

#!/usr/bin/ruby
hash.rb
mark = Hash.new
mark['English'] = 50
mark['Math'] = 70
mark['Science'] = 75
print "Enter subject name:"
sub = gets.chop
puts "Mark in #{sub} is #{mark[sub]}"

Output 1

Enter subject name:Math
Mark in Math is 70

Output 2

Enter subject name:French
Mark in French is

Take a look at output 1. The program asks the user to enter subject name. When the user enters

math, the program gives the math mark. Lets walkthru the code. At the very beginning we have the

line mark = Hash.new , in this line we declare a variable called mark of the type hash. Take a look

at the following lines

mark['English'] = 50
mark['Math'] = 70
mark['Science'] = 75

Unlike an array, hash can have a object as index. In this case we have used simple string as index.

We put the marks obtained in English, Math and Science in mark['English'] , mark['Math'] ,

mark['Science']. The next two statements

print "Enter subject name:"
sub = gets.chop

prompts the user to enter mark, when he does it, it gets stored into the variable called sub. In the

final line puts "Mark in #{sub} is #{mark[sub]}" we simply access the hash value using sub

as the key and print it out.

Take a look at output 2, in this case I have entered French and the program gives out no result. In

58

https://raw.github.com/mindaslab/ilrx/master/hash.rb

I Love Ruby 2015 Beta

the following program we will learn how to deal with it.

Default values in Hash
When we pass the index to an hash and if its value does exist, then the hash will faithfully return

that value. What if the index has no value defined. In the previous example we saw the program

returns nothing. In this program we hope to fix it. Look at the highlighted or darkened code. In it

instead of just giving mark = Hash.new as in the previous one, we have given mark = Hash.new

0 , here the zero is the default value. Now lets run the program and see what happens.

#!/usr/bin/ruby
hash_default_value.rb
mark = Hash.new 0 # We specify default value of mark is zero
mark['English'] = 50
mark['Math'] = 70
mark['Science'] = 75
print "Enter subject name:"
sub = gets.chop
puts "Mark in #{sub} is #{mark[sub]}"

Output

Enter subject name:Chemistry
Mark in Chemistry is 0

Look at the output, we haven't defined a value for mark['Chemistry'], yet when the subject name

is specified as Chemistry we get 0 as result. This is so because we have set zero as the default

value. So by setting default value we will have a value for those indexes we haven't defined yet.

Looping hashes
Looping in arrays is quiet easy, we normally use each function in array to iterate objects in array. In

similar fashion we can loop in hashes. Type the following code hash_looping.rb into a text editor

and execute it.

#!/usr/bin/ruby
hash_looping.rb
mark = Hash.new 0 # We specify default value of mark is zero
mark['English'] = 50
mark['Math'] = 70
mark['Science'] = 75
total = 0
mark.each { |key,value|

total += value
}
puts "Total marks = "+total.to_s

Output

59

https://raw.github.com/mindaslab/ilrx/master/hash_looping.rb
https://raw.github.com/mindaslab/ilrx/master/hash_default_value.rb

I Love Ruby 2015 Beta

Total marks = 195

In the program above we have calculated the total of all marks stored in the Hash mark. Note how

we use the each loop. Note that we get the key value pair by using |key,value| in the loop body.

The key holds the index of the hash and value holds the value stored at that particular index26. Each

time the loop is executed, we add value to total, so at the end the variable total has got the total

of the values stored in the hash. At last we print out the total.

Below is another program where we store student marks in an hash, we use the each loop to print

the key and value corresponding to the key. Hope you have understood enough to explain the code

below all by your self.

#!/usr/bin/ruby
hash_looping_1.rb
mark = Hash.new 0 # We specify default value of mark is zero
mark['English'] = 50
mark['Math'] = 70
mark['Science'] = 75
puts "Key => Value"
mark.each { |a,b|

puts "#{a} => #{b}"
}

Output

Key => Value
Science => 75
English => 50
Math => 70

More way of hash creation
There is another way to create hashes, lets look at it. See below, the explanation of the program is

same like the of previous program hash_looping_1.rb , except for the highlighted line in the

program below. Explain the program to yourself as I don't have the mood to write now

#!/usr/bin/ruby
hash_creation_1.rb
marks = { 'English' => 50, 'Math' => 70, 'Science' => 75 }
puts "Key => Value"
marks.each { |a,b|

puts "#{a} => #{b}"
}

Output

Key => Value
Science => 75
English => 50

26 The term index and key refer to the same stuff

60

https://raw.github.com/mindaslab/ilrx/master/hash_creation_1.rb
https://raw.github.com/mindaslab/ilrx/master/hash_looping_1.rb

I Love Ruby 2015 Beta

Math => 70

Using symbols
Usually in a hash we use Symbols as keys instead of String. This is because Symbol occupies far

less amount of space compared to String. The difference in speed and space requirement may not be

evident to you now, but if you are writing a program that creates thousands of hashes it may take a

toll. So try to use symbols instead of String.

So what is symbol? Lets fire up our irb by typing irb ­­simple­prompt in terminal. In it type the

following

>> :x.class
=> Symbol

Notice that we have placed a colon before x thus making it :x. Symbols have a colon at their start.

When we ask what class is :x, it says its a symbol. A symbol is a thing or object that can be used as

a key in a hash27. In similar way we declare another symbol called name and see what class it

belongs.

>> :name
=> :name
>> :name.class
=> Symbol

A variable can hold a symbol in it. Notice below that we have assigned a variable with value

:apple which is nothing but a symbol. When we ask what class it is a by using a.class , it says its

a symbol.

>> a = :apple
=> :apple
>> a.class
=> Symbol

Symbols can be converted to string using the to_s method / function. Look at the irb example

below where we convert symbol to string.

>> :orange.to_s
=> "orange"

There is no method in String to convert it to symbol. Suppose we would like to convert a string to

symbol, we could do it as shown. In the example below we try to convert a string called “human” to

symbol. To do so we employ the following trick

>> human = ":"+"human"
=> ":human"

27 Well it can be used for many things other than that. For now remembering this is sufficient

61

I Love Ruby 2015 Beta

First we append colon to a “human” to make it “:human” which still is a String.

>> human.class
=> String

as we can see above the variable human that contains “:human” is saying that its type is String.

What comes next is a cool thing, look at the code snippet below. We have a variable called

human_sym to it is assigned eval(human). What that eval? eval is a function in Ruby that evaluates

any String passed to it as a Ruby program! This is a really powerful feature. Substituting the value

of human, it becomes eval(“:human”) and eval evaluates it as a symbol which gets stored in

variable human_sym.

>> human_sym = eval(human)
=> :human
>> human_sym.class
=> Symbol

So when we call the class method for human_sym, it says its a symbol. Thanks to very powerful

function eval. Having equipped us with this knowledge, let us write a program in which hashes

don't use String but Symbols as key. Type in the program (below) hash_symbol.rb into text editor

and execute it.

#!/usr/bin/ruby
hash_symbol.rb

mark = Hash.new 0 # We specify default value of mark is zero
mark[:English] = 50
mark[:Math] = 70
mark[:Science] = 75
print "Enter subject name:"
sub = gets.chop
symbol = eval ":"+sub
puts "Mark in #{sub} is #{mark[symbol]}"

Output

Enter subject name:Math
Mark in Math is 70

When the program is run, it prompts for subject name, when its entered it shows corresponding

mark. Lets walkthru the code and see how it works. Notice that we use Symbols and not Strings as

keys in mark Hash as shown

mark[:English] = 50
mark[:Math] = 70
mark[:Science] = 75

Next we prompt the user to enter marks by using print "Enter subject name:" , the user enters

the subject name . Now look at the next three lines, first we get the subject name into variable sub

using the following statement

62

https://raw.github.com/mindaslab/ilrx/master/hash_symbol.rb

I Love Ruby 2015 Beta

sub = gets.chop

Having got the subject name we need to convert it into Symbol which is done by using eval

method as shown below

symbol = eval ":"+sub

In the statement above colon is concatenated before the value in sub, and this is passed to eval

method which returns a Symbol. This Symbol is stored in variable called symbol. So if we have

entered subject name as Math, the eval would have returned :Math which gets stored in symbol.

All we do next is to access the array value at key symbol and print it using the following statement

puts "Mark in #{sub} is #{mark[symbol]}"

Well why didn't Ruby make it so easy to convert a symbol to String and make it so hard to convert a

string to Symbol. Well try this in irb

>> "hello".to_sym
=> :hello

Now rewrite the program above all by your self by using newly gained knowledge.

So you have seen this program hash_creation_1.rb , we have now knowledge of symbols, so we

can write it as follows in hash_creation_1_a.rb

#!/usr/bin/ruby
hash_creation_1_a.rb
marks = { :English => 50, :Math => 70, :Science => 75 }
puts "Key => Value"
marks.each { |a,b|

puts "#{a} => #{b}"
}

Output

Key => Value
English => 50
Math => 70
Science => 75

See the highlighted line marks = { :English => 50, :Math => 70, :Science => 75 } we

here use symbols instead of strings as a key to hash. Hash has some advantages compared to string

as they occupy less memory compared to string (during the runtime of a program). More than that I

don't know why we use it, but I think we use it to prove that we are ruby gurus!!

In ruby 1.9 there is better way to write has_creation_1_a.rb , you can see it in

hash_creation_2.rb mentioned below. Just look at the highlighted line in program below

63

https://raw.github.com/mindaslab/ilrx/master/hash_creation_1_a.rb

I Love Ruby 2015 Beta

#!/usr/bin/ruby
hash_creation_2.rb

marks = { English: 50, Math: 70, Science: 75 }
puts "Key => Value"
marks.each { |a,b|

puts "#{a} => #{b}"
}

This program works exactly as the previous one, but the highlighted line marks = { English:

50, Math: 70, Science: 75 } gets translated (assume that its been translated) to the following

code marks = { :English => 50, :Math => 70, :Science => 75 } so its the new short form

way to declare hash with symbols as key, newly introduced in ruby 1.9

String, frozen string & symbol, their memory foot print
Strings occupy lot of memory lets see an example, fire up your irb and type the following code

>> c = "able was i ere i saw elba"
=> "able was i ere i saw elba"
>> d = "able was i ere i saw elba"
=> "able was i ere i saw elba"
>> c.object_id
=> 21472860
>> d.object_id
=> 21441620

In the above example we see two variables c and d , both are assigned to the same string "able

was i ere i saw elba" , but if I see the object id's by calling on c.object_id and d.object_id

, both are different. This means that the two "able was i ere i saw elba" are stored in different

location's. They are duplicated and copied.

This means that lets say you have the same string declared many locations in your program, and all

will occupy new memory, so that would cause lot of load on your computer RAM (for large

programs).

Now lets see what will happen if we use a new kind of thing called frozen string. Type the code

below in irb

>> a = "able was i ere i saw elba".freeze
=> "able was i ere i saw elba"
>> b = "able was i ere i saw elba".freeze
=> "able was i ere i saw elba"
>> a.object_id
=> 21633340
>> b.object_id
=> 21633340

64

https://raw.github.com/mindaslab/ilrx/master/hash_creation_2.rb

I Love Ruby 2015 Beta

Now in the above example we call a method called freeze upon the string. See the highlighted

part. Now when I check a and b's object id, both are the same. That means they both point to the

same string. They just occupy one space. This is like this. In the previous example new stuff was

created every time, but when we assign a variable with a frozen string, it checks weather the string

has already been (frozen) declared, if yes, it simply points to the same location.

Now lets see about how symbols occupy space, weather they duplicate themselves again and again

or not.

>> e = :some_symbol
=> :some_symbol
>> f = :some_symbol
=> :some_symbol
>> e.object_id
=> 1097628
>> f.object_id
=> 1097628

So in the example above we assign e and f to symbols :some_symbol and when we check for their

their object id they both are the same, or they both point to the same location. This means if we

declare symbols again and again they won't occupy extra space. Frozen strings and symbols are

good for memory. Ordinary strings are bad.

So why am I saying this in hash section, lets say you see this snippet of code

>> person = {"name" => "frank"}
=> {"name"=>"frank"}
>> person2 = {"name" => "bob"}
=> {"name"=>"bob"}

and you have this one

>> person = {"name".freeze => "frank"}
=> {"name"=>"frank"}
>> person2 = {"name".freeze => "bob"}
=> {"name"=>"bob"}

Just imagine which will occupy lowest amount of memory? Now think about large programs that

uses the same structure of hash in tens of lines of code….

65

I Love Ruby 2015 Beta

Ranges
Some times we need to have a range of values, for example in a grading system. If a student scores

from 60 to 100 marks, his grade is A, from 50 to 59 his grade is B and so on. When ever we need to

deal with a Range of values we can use ranges in Ruby. Type irb ­­simple­prompt in your

terminal and type these into it

>>(1..5).each {|a| print "#{a}, " }

Output

1, 2, 3, 4, 5, => 1..5

OK whats that (1..5) in the above statement, this is called Range. Range is a object that has got an

upper value and a lower value and all values in between. Note that like array, each and every value

in a range can be got out using a each method as shown above.

Range does not work only on numbers it can work on strings too as shown below

>> ("bad".."bag").each {|a| print "#{a}, " }

Output

bad, bae, baf, bag, => "bad".."bag"

Lets try out another few examples in our irb that will tell to us more about Ranges. So fire up your

irb and type the following

>> a = ­4..10

Output

=> ­4..10

In the above code snippet we create a range that ranges from value -4 to 10. To check what variable

type a belongs lets find out what class it is

>> a.class

Output

=> Range

As we can see a belongs to range class

To get the maximum value in a range use the max method as shown

>> a.max

Output

66

I Love Ruby 2015 Beta

=> 10

To get the minimum in a range use the min method as shown

>> a.min

Output

=> ­4

Its possible to convert range to an array by using to_a method as shown

>> a.to_a

Output

=> [­4, ­3, ­2, ­1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Ranges used in case .. when
Look at the program below (ranges_case_when.rb), we are building a student grading system in

which when a mark is entered the program puts out the grade of the student, study the code, type it

and execute it, we will soon see how it works.

#!/usr/bin/ruby
ranges_case_when.rb

puts "Student grading system"
print "Enter student mark: "
mark = gets.chop.to_i

grade = case mark
when 80..100 : 'A'
when 60..79 : 'B'
when 40..59 : 'C'
when 0..39 : 'D'
else "Unable to determine grade. Try again."

end

puts "Your grade is #{grade}"

Output

Enter student mark: 72
Your grade is B

If you execute the program above in Ruby 1.9.3 or above, it will throw out an error. For Ruby 1.9

and above, this is how you need to code the above program

#!/usr/bin/ruby
ranges_case_when_19.rb

puts "Student grading system"
print "Enter student mark: "

67

https://raw.github.com/mindaslab/ilrx/master/ranges_case_when_19.rb
https://raw.github.com/mindaslab/ilrx/master/ranges_case_when.rb

I Love Ruby 2015 Beta

mark = gets.chop.to_i

grade = case mark
when 80..100

'A'
when 60..79

'B'
when 40..59

'C'
when 0..39

'D'
else

"Unable to determine grade. Try again."
end

puts "Your grade is #{grade}"

At first the program prints that the software is student grading system and asks the user to enter the

student mark. When the mark is entered its got using gets statement, the trailing newline character

is chopped using the chop method and its converted to integer using the to_i method and the mark

is stored in the variable mark. All of it is done using this mark = gets.chop.to_i statement.

Once we have the mark, we need to compare it with a range of values to determine the grade which

is done using the following statements:

grade = case mark
when 80..100 : 'A'
when 60..79 : 'B'
when 40..59 : 'C'
when 0..39 : 'D'
else "Unable to determine grade. Try again."

end

Here we see that mark is passed to the case statement. In the when(s) we don't have a number or

String to compare the mark, in fact we have ranges. When the mark lies from 80 to 100 (both

inclusive) the grade is set to A, when its lies in 60 to 79 its set to B, C for 40 to 59 and D for 0 to 39.

If the user enters something wrong, grade will be set to "Unable to determine grade. Try again.".

So as we can see ranges come very handy when they are used with case when statement. It makes

programming relatively simple when compared to other languages.

Checking Intervals
Another use of Ranges is to check if any thing is located in a particular interval. Consider the

program (ranges_cap_or_small.rb) below

#!/usr/bin/ruby
ranges_cap_or_small.rb

68

https://raw.github.com/mindaslab/ilrx/master/ranges_cap_or_small.rb

I Love Ruby 2015 Beta

print "Enter any letter: "
letter = gets.chop

puts "You have entered a lower case letter" if ('a'..'z') === letter
puts "You have entered a upper case letter" if ('A'..'Z') === letter

Output

Enter any letter: R
You have entered a upper case letter

Read it carefully and execute it. In the above case I have entered capital R and hence the program

says I have entered a upper case letter. If I had entered a lower case letter, the program would have

said I had entered a lower case letter. Lets see how the program works. The following lines:

print "Enter any letter: "
letter = gets.chop

prompts the user to enter a letter, when the user enters a letter the gets method gets it, chop chops

off the new line character thats added due to the enter key we press. In the next line look at the if

('a'..'z') === letter , here we check if the value in variable letter lies with 'a' and 'z' (both

inclusive) , if it does, we print that user has entered small letter.. Note that we don't use double equal

to == but we use triple equal to ===28 to check if its in range. In a similar way ('A'..'Z') ===

letter returns true if letter has capital letter in it and the program prints the user has entered a

capital letter.

Using triple dots …
Another thing in Range I would like to add is using triple dots instead of using double dots. Just try

these out on your irb.

>> (1..5).to_a
=> [1, 2, 3, 4, 5]
>> (1...5).to_a
=> [1, 2, 3, 4]

See from above code snippet when I type (1..5).to_a we get an array output as [1, 2, 3, 4,

5] , but for (1...5).to_a we get output as [1, 2, 3, 4] . When we use the double dot the last

thing in Range that would appear when we use triple dots it gets cut out.

28 This triple equal to = = = is technically called case equality operator. Who cares?

69

I Love Ruby 2015 Beta

Functions
When you are using same piece of code many times, you can group them into a thing called

function, you can call that grouped code any where in your program to do that particular task. Lets

take a real world example, you goto the hotel and a waiter comes up to you. You order an fish fry

and you get it. You are not bothered what happens after you order.

Once you have ordered the fry, there are lots of procedures that takes place. The waiter notes down

your order, he goes up to the kitchen and places the order chit to the chef, the chef tells him that it

would take so much time for the dish to get cooked. The waiter thinks how he could keep you from

getting mad and arrives at your table, recommends a starter and/or an appetizer, serves you a drink

that would go well before you eat the dish, he pools the kitchen to see if the dish is ready. If the dish

is ready and if you have finished your starter he serves it. If you haven't finished your starter, he

tells the kitchen to keep the dish warm and waits for you to finish. Once he gets the dish to your

table, he lays the plate containing the dish and cutlery.

All you have done is to order a fish fry, and have blissfully ignored what is being functioned at the

background. You gave some order (input) to a waiter and got a dish (output). What to do and not to

is preprogrammed or trained into the waiters mind, according to his training, the waiter functions.

Lets get started with functions in Ruby. We will be looking at a program in which we will be

writing a function called print_line , which prints a line. Type the following program into your

text editor and run it.

function.rb

def print_line
puts '_'*20

end

print_line
puts "This program prints lines"
print_line

This is what you will get as output.

This program prints lines

70

https://raw.github.com/mindaslab/ilrx/master/function.rb

I Love Ruby 2015 Beta

Lets analyze the program. Consider the following piece of code

def print_line
puts '_'*20

end

The def tells that you are defining a function. A function must have a name, the name follows

immediately after def key word. In this case the name of the function is print_line. In it you can

write what ever code you want. In this case we are creating a line with twenty underscore

characters.

So we have created a function and have added code into it. All we need to do now is to call the

function from our program. Its done by just typing the name of the function in the program as

highlighted in code below

function.rb

def print_line
puts '_'*20

end

print_line
puts "This program prints lines"
print_line

As seen in the output, a line made up of twenty underscore characters gets printed above and below

the string “This program prints lines”.

Argument Passing
Lets get more control of the functions in this section. You don't goto a hotel and order a single dish,

you can order how much ever or how less you want. If you go with friends you can order more

servings, if you are alone, you will order less. Why can't we do the same thing with print_line

function? Why can't we vary its length, doing so will be a wonderful thing, we can print lines of

length what ever we choose.

Take a look at code highlighted below, we have typed a thing called length after the function name,

its called as argument. Like a function, an argument has an name, in this case we have named it

length. We can pass any values to it to vary the length of the line printed. Type the code below and

execute it

function_1.rb

def print_line length
puts '_'*length

71

https://raw.github.com/mindaslab/ilrx/master/function_1.rb
https://raw.github.com/mindaslab/ilrx/master/function.rb

I Love Ruby 2015 Beta

end

10.step(50,10) do |x|
print_line x

end

40.step(10,­10) do |x|
print_line x

 end

You will get a design pattern as shown below

__
__
__

Take a look at the following code

10.step(50,10) do |x|
print_line x

end

40.step(10,­10) do |x|
print_line x

 end

We have used step functions to increment or decrement the value which we capture it into a variable

called x which is inside the loop, we pass x to the print_line function by placing it after its call as

highlighted above. So each time a line of varying length (determined by x) gets printed. The

program is constructed in a way so that a pattern is generated.

Default Argument
In function_1.rb you have seen how to pass an argument to a function. What if suppose you fail

to pass an argument to the function. If you do so, an error will be generated which a good

programmer will not desire29 to happen. To prevent this and to make programming a bit easy its

better to provide a default argument to a function. Note the highlighted code given below in

function_default_argument.rb

function_default_argument.rb

def print_line length = 20
puts '_'*length

29 “Desire is the cause of all suffering” - Buddha

72

https://raw.github.com/mindaslab/ilrx/master/function_defaut_argument.rb

I Love Ruby 2015 Beta

end

print_line
print_line 40

Execute the program and observe the result

__

You can see in the program, in function print_line by giving length = 20 we have indicated

that if no argument is passed the function must assume that value of length is 20 . If passed this

value will be overridden with what ever value you pass. As you can see in the second highlight

(where the function is highlighted), we simply call the function just by its name (print_line). We

don't bother to pass value for length to it, yet we see a line of , length 20 units gets printed in the

output. I hope you know why.

Returning Values
We have till now seen function taking in arguments, we will now see that the function can return

back values which can be used for some purpose. Lets now see the program function_return.rb,

study the code, type it and execute it.

#! /usr/bin/ruby
function_return.rb

def addition x, y
sum = x+y
return sum

end

a, b = 3, 5

puts addition a,b

Output

8

The output you get out after executing is 8, which proves30 that we have written a flawless program.

Note the method named addition in the above program. It accepts two arguments x and y, inside

the method we declare a variable called sum which is assigned to the addition of x with y. The next

statement is the hero here, see that we have used a keyword return, this returns the value out of the

function. In the above program we return out the sum and hence when we get the answer out.

Its not that we must use return statement to return a value. The last statement that gets executed in a

30 Not a solid proof however!

73

https://raw.github.com/mindaslab/ilrx/master/function_return.rb

I Love Ruby 2015 Beta

Ruby function gets returned by default. Consider the program function_last_gets_returned.rb

thats shown below. In it we have a method called square_it which accepts a single argument

called x. It has a single statement x**2 which happens to be the last statement as well.

#!/usr/bin/ruby
function_last_gets_returned.rb

def square_it x
x**2

end

puts square_it 5

Type the program and execute it.

25

As you see we have called square_it 5 and we get 25 as the result. Its possible because in Ruby

the result of last executed statement gets returned by default.

Keyword arguments
From Ruby 2 onwards there is a feature called Keyword argument. To understand it type the

program below and execute it

keyword_argument.rb

def say_hello name: "Martin", age: 33
 puts "Hello #{name} your age is #{age}"
end

say_hello name: "Joseph", age: 7
say_hello age: 21, name: "Vignesh"
say_hello

Output

Hello Joseph your age is 7
Hello Vignesh your age is 21
Hello Martin your age is 33

So, to see how this feature work, lets analyze the code. Look at the function definition of say_hello ,

its as shown below

def say_hello name: "Martin", age: 33
 puts "Hello #{name} your age is #{age}"
end

Look at the highlighted part def say_hello name: "Martin", age: 33 . Here we don't specify

arguments as def say_hello name= "Martin", age= 33 rather we use special name:

“Martin” , we have taken out the equal to sign and replaced with colon. So whats the use? Now

74

https://raw.githubusercontent.com/mindaslab/ilrx/master/keyword_argument.rb
https://raw.github.com/mindaslab/ilrx/master/function_last_gets_returned.rb

I Love Ruby 2015 Beta

take at look at the part where the function is called

say_hello name: "Joseph", age: 7
say_hello age: 21, name: "Vignesh"
say_hello

The first line is straight forward say_hello name: "Joseph", age: 7 , here the first argument is

name and second argument is age. But look at the highlighted code say_hello age: 21, name:

"Vignesh" , here the first argument is age and second one is name. But since the argument is hinted

by the keyword, its position is irrelevant and the method prints a string as we expect.

The third line say_hello is just to show what happens if arguments are missed, since we have

specified default values, it takes the default ones.

Is it possible to use keyword arguments with default values? Absolutely yes. Try the program below

and see for yourself

keyword_argument_no_defaults.rb

def say_hello name:, age:
 puts "Hello #{name} your age is #{age}"
end

say_hello name: "Joseph", age: 7
say_hello age: 21, name: "Vignesh"
say_hello # uncomment it and try it out
say_hello "Karthik", 32 # uncomment it and try it out

Recursive function
Lets see another math thing. You might be wondering why am I doing all math? Certain

programmers do write books that keeps out as much math out as possible, I am not a professional

mathematician, but I admire math. Computers are based on math. All computers use a thing called

boolean algebra to do all tasks. I wouldn't say that you must be a mathematician to be a

programmer, but knowing math does help.

OK what is a factorial? Take a number, lets take 3, now what will be 3 X 2 X 1 , that will be six!

Simple isn't it? 6 is factorial of 3. Well we will take 4 now, so 4 X 3 X 2 X 1 will be 24, in similar

way factorial of 2 will be 2 X 1 which is 2. Having equipped with this knowledge we will now

construct a program that will give us factorial of a number.

Study the program given below. Concentrate on the function named factorial

75

https://raw.githubusercontent.com/mindaslab/ilrx/master/keyword_argument_no_defaults.rb

I Love Ruby 2015 Beta

factorial.rb

def factorial num
fact = 1
1.upto(num) { |a|

fact = fact * a
}
fact

end

number = 17
puts "Factorial of #{number} = #{factorial number}"

Execute the code above and this is what you get as output

Factorial of 17 = 355687428096000

In the above example (in the function factorial) we have taken all number from one to the particular

number, multiplied it and got factorial. Now study the code factorial_1.rb shown below

factorial_1.rb

def factorial num
return 1 if num == 1
return num * factorial(num­1)

end

number = 17
puts "Factorial of #{number} = #{factorial number}"

Execute the code above and this is what you get as output

Factorial of 17 = 355687428096000

The output is same as the previous program factorial.rb . Take a very close look at the function

named factorial in above program. Let me list it out for you to see

def factorial num
return 1 if num == 1
return num * factorial(num­1)

end

This function is confusing, isn't it? When I was crazy and did want to learn about programming I

studied C. The concept of recursive functions was explained using factorial, and I never did

understand it for a long time. To avoid the pain let me explain in detail.

Take the number 1. Factorial of it is 1. So if 1 is encountered 1 is returned as shown in highlighted

code below

def factorial num
return 1 if num == 1
return num * factorial(num­1)

end

Now take the number 2. Factorial of it 2 X 1 , which is 2 multiplied factorial of 1. In other words

76

https://raw.github.com/mindaslab/ilrx/master/factorial_1.rb
https://raw.github.com/mindaslab/ilrx/master/factorial.rb

I Love Ruby 2015 Beta

we can write it as 2 multiplied by factorial of 2-1 (2 x factorial 2−1). So if number two is

encountered in the function factorial, it skips the first if statement and the second statement thats

highlighted below gets executed

def factorial num
return 1 if num == 1
return num * factorial(num­1)

end

In this an interesting thing happens. Here factorial (2-1) is called, that is factorial function calls

itself. So when factorial of 2-1 , i.e factorial of 1 is called, it returns 1, this 1 is multiplied by 2 and

is returned back, so in this case 2 is returned ultimately.

Now take the number 3. Its factorial is 3 X 2 X 1. This can be written as 3 multiplied by factorial 2.

Factorial 2 gets translated as 2 multiplied by factorial 1. Hence the result is got out finally. For any

number larger than 1, the factorial function calls itself repeatedly. The process of function calling

itself is called recursion.

Variable number of arguments
Lets say that you do not know how many arguments are passed to a function, lets say that you are

writing a function to add N numbers, the value of N is not known, so how could you get variable

number of arguments. Well type the program function_variable_arguments.rb thats given below and

execute it.

function_variable_arguments.rb

def some_function a, *others
puts a
puts "Others are:"
for x in others

puts x
end

end

some_function 1,2,3,4,5

Output

1
Others are:
2
3
4
5

So the output of the program is shown above. As you see we pass 1,2,3,4,5 as arguments, then a

77

https://raw.github.com/mindaslab/ilrx/master/function_variable_arguments.rb

I Love Ruby 2015 Beta

is just a single variable and hence it takes the value 1, the other variables are be absorbed by the

variable *others (note the star before variable name) which is a special kind of argument, it takes

all the rest of the arguments that are not absorbed by previous argument variables and stores it in

variable name others (as an array). Now in the following piece of code

for x in others
puts x

end

Well thats it. Now try writing a function to find maximum of n-numbers and write another function

to find minimum of n-numbers and write a program to find maximum and minimum of a bunch of

numbers.

Hashes to functions
Another way to sneak in multiple arguments into a function is to pass them as hashes. Look at the

program below, we have a function named some_function which gets in two arguments, the first

one named first_arg and second one named others_as_hash, we call this function in the

following line some_function "Yoda", {jedi: 100, sword: 100, seeing_future: 100} ,

execute it and note the output

hashes_to_functions.rb

def some_function first_arg, others_as_hash
puts "Your first argument is: #{first_arg}"
puts "Other arguments are:"
p others_as_hash

end

some_function "Yoda", {jedi: 100, sword: 100, seeing_future: 100}

Output

Your first argument is: Yoda
Other arguments are:
{:jedi=>100, :sword=>100, :seeing_future=>100}

As we have expected the program prints the first argument and the hash passed to others_as_hash,

well this one is no surprise, but take a look at the program hashes_to_function_1.rb below,

execute it, its output will be the same as program above

hashes_to_functions_1.rb

def some_function first_arg, others_as_hash
puts "Your first argument is: #{first_arg}"
puts "Other arguments are:"

78

https://raw.github.com/mindaslab/ilrx/master/hashes_to_functions_1.rb
https://raw.github.com/mindaslab/ilrx/master/hashes_to_functions.rb

I Love Ruby 2015 Beta

p others_as_hash
end

some_function "Yoda", jedi: 100, sword: 100, seeing_future: 100

But just note the highlighted part, we have called some_function as shown

some_function "Yoda", jedi: 100, sword: 100, seeing_future: 100

In the function we pass the second argument as a hash but its given as shown above (highlighted),

note that we have continently avoided the curly braces and it still works. Thats the point.

79

I Love Ruby 2015 Beta

Variable Scope
We have seen about functions in the last section and we have seen about variable before. I think the

time is right to type about variable scope. In this chapter we examine how long or how far a variable

is valuable when its declared in a particular section of a program. Lets start with a example. Fire up

your text editor, type the code below (variable_scope.rb) and execute it.

#!/usr/bin/ruby
variable_scope.rb

x = 5

def print_x
puts x

end

print_x

Output

variable_scope.rb:7:in `print_x': undefined local variable or method `x' for
main:Object (NameError)

from variable_scope.rb:10

Well you get an error. See that you have declared a variable by typing x = 5. In the function

print_x you tell the ruby program to print out the variable x, but it throws a error. Look at the

output, it says undefined local variable or method `x' for main:Object (NameError)

from variable_scope.rb:10 , well we have defined x and have assigned it to value 5 at the

beginning, then how come Ruby throws the error? Well, we have defined x outside the function

print_x hence x has no scope inside it, so we get an error.

A good programmer is the one who exploits the advantages provided by a programing language and

who is smart enough to play by rules and limitations it imposes. It might look as a real handicap to a

newbie that we are not able to access a variable we have assigned outside a function, but as your

program and you become mature programmer, you will realize its blessing in disguise.

To learn more type the program below (variable_scope_1.rb) in your text editor and execute it.

#!/usr/bin/ruby
variable_scope_1.rb

x = 5

80

https://raw.github.com/mindaslab/ilrx/master/variable_scope_1.rb
https://raw.github.com/mindaslab/ilrx/master/variable_scope.rb

I Love Ruby 2015 Beta

def print_x
x=3
puts x

end

print_x
puts x

Output

3
5

Take a careful look at the output. First we declare a variable x = 5 , then in function print_x we

declare a variable x = 3. Note that the variable declared in function print_x is not the same one as

thats been declared outside the function. Next we call upon the function print_x which prints the

output as 3 which is expected since inside print_x we have written puts x after x = 3. Next

statement is the hero here, (outside the function) we have written puts x after print_x, if you

expected to print 3 then you are wrong. Here x is the x that we have declared it outside the function,

here it will get printed as 5. This means that a variable declared inside the function has no scope

outside it.

To know more and to convince ourself that variable declared inside a function has no scope outside

it, we will try out another program. Type in the program variable_scope_2.rb into your text editor

and execute it.

#!/usr/bin/ruby
variable_scope_2.rb

def print_variable
y = 3
puts y

end

print_variable
puts y

Output

3
variable_scope_2.rb:10: undefined local variable or method `y' for main:Object
(NameError)

Here is how the program works or here is how the program doesn't works as it throws an error. Take

a look at the function print_variable, in it we have declared a variable called y using statement y

= 3 and told the ruby interpreter to print its value using statement puts y. So in the program when

we call print_variable the y is declared and its value 3 is printed without a glitch. Next we say

puts y outside the function print_variable, since y is only declared within the function outside

81

https://raw.github.com/mindaslab/ilrx/master/variable_scope_2.rb

I Love Ruby 2015 Beta

it, the variable y doesn't exist and in technical terms it has no scope, so the Ruby interpreter throws

an error. So we get the error message as follows:

variable_scope_2.rb:10: undefined local variable or method `y' for main:Object
(NameError)

­­­­ x X x ­­­­

Looks like Matz (the creator of Ruby) hasn't seen the movie 'Back to the future'. Lets see another

program that proves that time travel isn't built into Ruby, type the program below

(variable_scope_3.rb) into your text editor and execute it.

#!/usr/bin/ruby
variable_scope_3.rb

puts a # you can't access a variable that will be created in future
a = 10

Output

variable_scope_3.rb:4: undefined local variable or method `a' for main:Object
(NameError)

If you have anticipated right, the program throws out an error. We have given puts a before a has

been declared. Ruby interpreter does not consider whats declared in future, so when puts a is

encountered it, at that point of time a is undeclared, and hence an error is thrown. In other words

scope of an variable starts only after it has been declared.

Global Variables
If you are a one who don't like the idea that variables declared outside a function cant be accessed

from it, then Ruby provides a way to do it. There are special variables called global variables that

can be accessed from any where. Global variables are preceded by a dollar ($) sign. To know about

global variables lets see an example. Type the program below (global_variables.rb) and execute it.

#!/usr/bin/ruby
global_variables.rb

$x = 5

def print_x
$x = 3
puts $x

end

print_x
puts $x

Output

3

82

https://raw.github.com/mindaslab/ilrx/master/global_variables.rb
https://raw.github.com/mindaslab/ilrx/master/variable_scope_3.rb

I Love Ruby 2015 Beta

3

Having run it successfully lets see how it works. First we declare a global variable $x and assign it

to the value 5 in the statement $x = 5. Next we define a function print_x in which we change the

value of $x to 3 using statement $x = 3, then we print the value of $x using puts $x. So obviously

we call print_x we get the output as 3. Next outside the function after calling print_x, we print

the value of $x using puts $x. If you think it would print 5, then you are mistaken. Since $x can be

accessed from any where, and we have called print_x, in print_x we have changed the value of

$x to 3, no matter what, even outside the scope of the function the value of $x will be changed.

Lets see another example to understand global variables better. Look at the example below

(global_variables_1.rb), type it in your text editor and execute it

#!/usr/bin/ruby
global_variables_1.rb

$x = 5

def print_x
puts $x

end

print_x
$x = 7
print_x
$x = 3
print_x

here is how the output of the program looks like

5
7
3

Lets see how the program works. At first we declare a global variable $x and assign it to value five

using $x = 5, then we define a function called print_x in which we just print out the value of $x

using puts $x statement. While we call the first print_x statement, the value of $x is 5 and hence

5 gets printed. Next we change the value of $x to 7 in statement $x = 7 and when we call print_x,

the value of $x which is now 7 gets printed. Finally we set $x to 3 using $x = 3, when we call

print_x for the final time 3 gets printed out.

This program proves that global variables can be manipulated from any where and these

manipulated values can be accessed from any where.

Next arises a question weather global variable and local variable can have the same name. The

answer is yes. Its because global variables start with a $ sign and local variables start with a letter or

83

https://raw.github.com/mindaslab/ilrx/master/global_variables_1.rb
https://raw.github.com/mindaslab/ilrx/master/global_variables_1.rb

I Love Ruby 2015 Beta

underscore character, so ruby can clearly tell the difference between them. Lets see a program that

proves this, read, learn type and execute the program given below (global_variables_2.rb). Once

you are done with it, we will see how it works.

#!/usr/bin/ruby
global_variables_2.rb

$x = 5
x = 5

def print_x
$x = 3
x = 3
puts "In print_x"
puts "$x = "+$x.to_s
puts "x = "+x.to_s

end

print_x
puts "Outside print_x"
puts "$x = "+$x.to_s
puts "x = "+x.to_s

Output

In print_x
$x = 3
x = 3
Outside print_x
$x = 3
x = 5

In the above program we declare two variables one global $x and assign it to value 5 and another

local x and assign it to value 3 in the following lines

$x = 5
x = 5

Next we create a function print_x in which we change the value of $x to 3, since $x is global, the

change is affected every where in the program, next we have statement x = 3, this variable x is

local one and is different from x = 5 which we defined outside the function. Next we will tell the

program to print the values of $x and local x using he following statements

puts "$x = "+$x.to_s
puts "x = "+x.to_s

OK, when the program encounters the print_x call, we get the following output

In print_x
$x = 3
x = 3

Note that $x is now 3 and local x is also 3. Now outside the function we print the values of $x and x

84

https://raw.github.com/mindaslab/ilrx/master/global_variables_2.rb

I Love Ruby 2015 Beta

using the following statements (last 3 lines of the program)

puts "Outside print_x"
puts "$x = "+$x.to_s
puts "x = "+x.to_s

When these statements are executed, we get the following output

Outside print_x
$x = 3
x = 5

Here as $x has been assigned to 3, 3 is printed as its value. x over here remains 5 as here x refers to

not the x thats defined inside print_x, but the one thats defined out of it.

85

I Love Ruby 2015 Beta

Classes & Objects

Creating a Square
Classes can be thought as variables and functions bundled under one name. To illustrate about

classes lets look at a humble object called square. Square is a very simple geometric shape that has

four sides of equal length, how to represent this square in a Ruby program? We now write an empty

class called square

#square.rb

class Square
end

We have written an empty class. The word class tells that we are writing a definition of a class.

What follows the class keyword is the name of the class, in this case is Square. One must note that

name of a class in Ruby must start with a capital letter31.

A square has got four sides, all have the same length. We now put an variable into square called

side_length.

#square.rb

class Square
attr_accessor :side_length

end

You might ask what attr_accessor is? It stands for attribute accessors, which enables you to get

and set the side_length easily. Lets use this square class and see how it works. Modify the code

above as shown below:

#square.rb

class Square
attr_accessor :side_length

end

s1 = Square.new # creates a new square
s1.side_length = 5 # sets its side length
puts "Side length of s1 = #{s1.side_length}" # prints the side length

When you execute the above code, this is what you will get as result

Side length of s1 = 5

31 The name of a class is always a constant. Remeber? That constants in Ruby always start with a capital letter.

86

https://raw.github.com/mindaslab/ilrx/master/square.rb

I Love Ruby 2015 Beta

Lets walk thru the newly added code, take the line

s1 = Square.new

In the above statement we create a new square and store its parameters into a variable called s1. A

new class instance can be created by using <class name>.new. Having created a new square, we

can now access its side_length using the dot operator '.'. So we first set the side_length to five

units using the following statement

s1.side_length = 5

Now having assigned the side length, we can use it for any purpose. Now we just simply print the

side_length of square using the following statement;

puts "Side length of s1 = #{s1.side_length}"

Functions in Class
We have a class called square which has a attribute named side_length. With the side_length

we can find the squares area, its perimeter and its diagonal length. In this example I am going to

find the area and perimeter. Why I omit diagonal length? Well its my wish, if you are not happy

about it modify this book and redistribute it. So lets add two functions to find our area and

perimeter. Modify the code as shown (I am saving the modified code in a file called square_1.rb)

#square_1.rb

class Square
attr_accessor :side_length

def area
@side_length * @side_length

end

def perimeter
4 * @side_length

end
end

In the highlighted code above you see that I have added two functions, one named area and another

named perimeter which computes and returns the area and perimeter of the square respectively .

These functions are very similar to any other function we have created before, only now its placed

inside a class. Lets write some additional code to exploit the new features we have added, just add

the code highlighted below and run it

#square_1.rb

class Square
attr_accessor :side_length

87

https://raw.github.com/mindaslab/ilrx/master/square_1.rb

I Love Ruby 2015 Beta

def area
@side_length * @side_length

end

def perimeter
4 * @side_length

end
end

a = Square.new
a.side_length = 5
puts "Area: #{a.area}"
puts "Perimeter: #{a.perimeter}"

Run the example and here is what you will get as output

Area: 25
Perimeter: 20

The explanation is pretty straight forward in the following lines

a = Square.new
a.side_length = 5

We have declared a new square and have assigned side_length as 5 units. In lines below we

simply print out the values of a.area and a.perimeter

puts "Area: #{a.area}"
puts "Perimeter: #{a.perimeter}"

See how we have embedded the values of a's area and perimeter (highlighted in the code above).

One thing that must be new fo you if you are reading this book is shown below (highlighted):

def area
@side_length * @side_length

end

We know that square has an attribute called side_length which is defined by the statement

attr_accessor :side_length , well as shown in highlighted code above we have used

@side_length instead of side_length , thats because inside the class, class-variables are prefixed

with @ (at) symbol. This helps us to identify between class variables and local variables or

functions that share the same name.

Initializers or Constructors
In previous examples where we dealt with squares, have you ever wondered what happens when

you say like s = Square.new ? Well in this case a new Square gets created and its put inside the

variable s. If one asks a question weather we can do something when a Square initializes? The

answer is yes! In fact you can do almost anything you want. All you have to do is to put code inside

88

I Love Ruby 2015 Beta

a function called initialize, this function gets called when ever there is a <class name>.new

call

Look at the example square2.rb , take a good look at the highlighted or darkened lines, there we

define a function called initialize , this function takes in one argument named side_length

who's default value is zero. If side_length is specified, it sets the @side_length attribute in the

square class to that value else @side_length takes the default value of zero. Type square2.rb into

text editor and execute it

#square_2.rb

class Square
attr_accessor :side_length

def initialize side_length = 0
@side_length = side_length

end

def area
@side_length * @side_length

end

def perimeter
4 * @side_length

end
end

s1 = Square.new 4
s2 = Square.new
s2.side_length = 5

puts "Area of s1 is #{s1.area} squnits"
puts "Peimeter of s2 is #{s2.perimeter} units"

Output

Area of s1 is 16 squnits
Perimeter of s2 is 20 units

In the program concentrate on the following lines

s1 = Square.new 4
s2 = Square.new
s2.side_length = 5

In the first line s1 = Square.new 4 we create a Square named s1 who's @side_length is 4 units.

In the second line s2 = Square.new we create a Square named s2, initially its side length

(@side_length) would be set to zero units, only in the third line s2.side_length = 5 its

@side_length is set to 5 units.

In rest of the code

89

https://raw.github.com/mindaslab/ilrx/master/square_2.rb

I Love Ruby 2015 Beta

puts "Area of s1 is #{s1.area} squnits"
puts "Peimeter of s2 is #{s2.perimeter} units"

We print the area of Square s1 and perimeter of Square s2 which produces the desired output.

Private Methods
By default the methods or functions in a class is public (can be accessed outside the classes scope),

if you don't want it to be accessed by programs outside a class you can make it private. Lets create a

class called Human, and put a private method in it, lets try to access it from outside the class and

see what happens to it. Type in the program and execute it

private_method.rb

class Human
attr_accessor :name, :age

def tell_about_you
puts "Hello I am #{@name}. I am #{@age} years old"

end

private

def tell_a_secret
puts "I am not a human, I am a computer program. He! Hee!!"

end

end

h = Human.new
h.name = "Zigor"
h.age = 314567
h.tell_about_you
h.tell_a_secret # this wont work

The program above when executed produces the following result

Hello I am Zigor. I am 314567 years old
human.rb:20: private method `tell_a_secret' called for #<Human:0xb7538678
@name="Zigor", @age=314567> (NoMethodError)

Look at the highlighted line in the program, the function tell_a_secret is placed under the

keyword private, this makes it not accessible from outside the class. Note the line when we call

the method tell_a_secret , it throws an error, in fact it says a no method error (NoMethodError)

which means that the called method does not exist in the class. It does not mean the computer is

telling a lie, instead its safely keeping a secret.

In programing you only let certain parts of your program visible to others, this helps keep the

90

https://raw.github.com/mindaslab/ilrx/master/private_method.rb

I Love Ruby 2015 Beta

interface simple and give your users only the resource they really need to write code, this sort of

hiding unwanted things uncomplicates programming.

One might question, if there is no way to access a private method, then why we need to have it?

Well there are ways to access it indirectly as you see in example below. Type it and execute it

private_method_1.rb

class Human
attr_accessor :name, :age

def tell_about_you
puts "Hello I am #{@name}. I am #{@age} years old"

end

def confess
tell_a_secret

end

private

def tell_a_secret
puts "I am not a human, I am a computer program. He! Hee!!"

end

end

h = Human.new
h.name = "Zigor"
h.age = 314567
h.tell_about_you
h.confess

This is how the result will be

Hello I am Zigor. I am 314567 years old
I am not a human, I am a computer program. He! Hee!!

Take a good look at the method confess , in it we call the private method tell_a_secret , so

when we call confess even outside the class (h.confess), the confess method which is public

calls the private method, since confess is inside the class Human, it can access any private method

in Human without an hindrance, so the program executes perfectly.

Class variables and methods
Till now we have learned to create a class, we know that a class can have certain attributes, for

example a human might have attributes like name, age and blah blah... We know that class can

91

https://raw.github.com/mindaslab/ilrx/master/private_method_1.rb

I Love Ruby 2015 Beta

have some functions in it which can be called by variable which is a instance of the class. OK fine

well and good. What if we want to call a function or a class without declaring a variable which is

the instance of that class? Those functions that can be called without declaring a instance variable

that belongs to the class type is called class methods. Those variables that can be accessed without

using instance variables are called class variables.

Lets look at a program that will demonstrate class variables and methods. In the following program

class_var_methods.rb , I will create a class named Robot. It will have a class variable named

@@robot_count which will keep track of how many Robots were created. Since its a class variable

we indicate it to the computer by using two @ (at) symbols before it, hence in program we denote it

like @@robot_count .

We create a function named robots_created that will return number of Robots that were created.

Notice (in program below) that the function robots_created is written as

self.robots_created , the self keyword tells the computer that this function can be called without

an instance object being declared.

Type the program shown below class_var_method.rb in text editor and execute it

class_var_methods.rb

class Robot
def initialize

if defined?(@@robot_count)
@@robot_count += 1

else
@@robot_count = 1

end
end

def self.robots_created
@@robot_count

end
end

r1 = Robot.new
r2 = Robot.new
puts "Created #{Robot.robots_created} robots"
r3, r4, r5 = Robot.new, Robot.new, Robot.new
puts "Created #{Robot.robots_created} robots"

When executed the program above will give the following result

Created 2 robots
Created 5 robots

Lets see the initialize method and lets analyze how we keep track of number of Robot's created.

92

https://raw.github.com/mindaslab/ilrx/master/class_var_methods.rb

I Love Ruby 2015 Beta

When the first Robot is created in the statement

r1 = Robot.new

The program control goes to the initialize method, since its the first time the variable

@@robot_count is not defined, so the condition in the following if statement

if defined?(@@robot_count)
@@robot_count += 1

else
@@robot_count = 1

end

fails and the code goes to the else part and there @@robot_count = 1 defines the variable

@@robot_count and initializes to value 1.

In the second statement where we create robot named r2 using the following command

r2 = Robot.new

The control once again goes to the initialize method, there the if statement passes as

@@robot_count has already been defined when we created r1, now the @@robot_count gets

incremented by 1, now becomes 2.

Next is the puts statement we call Robot.robots_created which just returns the @@robot_count ,

hence 2 gets printed. Next in the following statement:

r3, r4, r5 = Robot.new, Robot.new, Robot.new

we create three new robots r3, r4 and r5. Now the @@robot_count will get incremented to 5. In the

next puts statement, the result gets printed. The moral of the story is this, class methods have a

self. (self dot) before them, class variables have two @ (@@) before them.

Fine, hope everything went right for the reader. Why now we use attr_reader for robot_count

variable so that our program gets simplified as shown below. Type in and execute it.

attr_for_classvar.rb
this program dosent work

class Robot
attr_reader :robot_count

def initialize
if defined?(@@robot_count)

@@robot_count += 1
else

@@robot_count = 1
end

end
end

93

https://raw.github.com/mindaslab/ilrx/master/attr_for_classvar.rb

I Love Ruby 2015 Beta

r1 = Robot.new
r2 = Robot.new
puts "Created #{Robot.robot_count} robots"
r3, r4, r5 = Robot.new, Robot.new, Robot.new
puts "Created #{Robot.robot_count} robots"

What was the result you got? Can attr_reader be used for class variables?

Inheritance
We evolved from monkeys. Chimps look like us, we both share many characteristics, we have many

attributes similar to chimps, they are so similar us, that chimps were sent into space before us to see

the impact of zero gravity on a monkeys body. Only when the scientist felt safe did they send

humans32. When man evolved from monkeys he inherited many things from them, for example we

look like monkeys, don't believe it? Just go and stand in front of a mirror!

OK, in programing world we have a thing called inheritance in which one class can have property

of another class with some little (or sometimes extreme) changes. Let me tell you a math truth, 'a

square is a rectangle in which all sides are equal' , is it not so? All squares are rectangles, but not all

rectangles are squares. We will be using this stuff to write our next program inheritance.rb .

Write the program in text editor and execute it.

inheritance.rb

class Rectangle
attr_accessor :length, :width

def initialize length, width
@length = length
@width = width

end

def area
@length * @width

end

def perimeter
2 * (@length + @width)

end
end

class Square < Rectangle

def initialize length
@width = @length = length

end

32 Uri Gagarin of the Soviet Union was the first man to go into space

94

https://raw.github.com/mindaslab/ilrx/master/inheritance.rb

I Love Ruby 2015 Beta

def side_length
@width

end

def side_length=(length)
@width = @length = length

end
end

s = Square.new 5
puts "Perimeter of the square s is #{s.perimeter}"
r = Rectangle.new 3, 5
puts "Area of rectangle r is #{r.area}"

When executed, the program above produces the following result

Perimeter of the square s is 20
Area of rectangle r is 15

Read the program carefully, we have defined a class called Rectangle that has two attributes

namely @length and @width. When we initialize it in statement r = Rectangle.new 3, 5, we

pass these two parameters. When area is called the product of these two attributes is returned, when

its perimeter is called using some genius formula the perimeter is calculated and returned. Fine , we

then define a class called Square that inherits the properties of Rectangle. To say that the class

Square inherits Rectangle we use a < (less than) sign as shown

class Square < Rectangle

Take a look at the initialize method in Square class, it takes only one argument length which it uses

to set the values of attributes @length and @width . Since Square inherits Rectangle class it gets

all attributes and methods of Rectangle by default. Having set the @width and @height of the

Square we can now call the Square's area and perimeter functions just like we do that with

Rectangle.

Overriding Methods
We have seen that class can inherit attributes and methods from its base class. Lets say that we have

a class A that is a parent class of B (i.e. B inherits A), now the scenario is there is a method defined

in B which has the same name that of method in A. When we create a instance variable of type B

and call that method name it will check if the method is present in class B if yes that method will be

executed, if that method is not found in B, then the Ruby interpreter checks it in class A, if its found

its executed, else NoMethodError33 is raised.

33 No method error means that the method name called cannot be found, hence an error is raised by the Ruby
interpreter

95

I Love Ruby 2015 Beta

To make this clear lets see an example, type and execute override_methods.rb

#!/usr/bin/ruby
override_methods.rb

class A
def belongs_to

puts "I belong to in class A"
end

def another_method
puts "Just another method in class A"

end
end

class B < A
def another_method

puts "Just another method in class B"
end

end

a = A.new
b = B.new
a.belongs_to
a.another_method
b.belongs_to # This is not overriden so method in class A is called
b.another_method # This is overridden so method in class B is called

Result

I belong to in class A
Just another method in class A
I belong to in class A
Just another method in class B

Take a look at the result. When a.belongs_to is called the program prints out I belong to in

class A as it was defined in class A. When a.another_method is called we see the program prints

out Just another method in class A as it was defined in class A . When b. belongs_to is

called the program once again prints out I belong to in class A as there is no belongs_to

method in class B and hence the parent method is called. See the drama when b.another_method

is called , the program prints out Just another method in class B and not Just another

method in class A as B has another_method in its scope, so there is no need to look for that

method in class A.

We will take the concept of overriding a step further, know that everything in Ruby is a object.

Ruby is purely an object oriented programing language. Shoot up your irb and type the following

>> "Something".class
=> String

96

https://raw.github.com/mindaslab/ilrx/master/override_methoda.rb

I Love Ruby 2015 Beta

>> 1.class
=> Fixnum
>> 3.14278.class
=> Float

When ever in Ruby you put an .class after object it returns the class to which the object belongs.

So we see that numbers like 1, 2 ,3........ belong to the Fixnum class. Lets override its key method

the + . Plus sign is used in Ruby to add two numbers. Try these examples in your irb

>> 1+2
=> 3
>> 478+90
=> 568

So we see that when there is a Fixnum, followed by a plus sign and another Fixnum Ruby

interpreter adds these two Fixnum's which is returned as result. Lets now mess up with the plus

sign. Take a look at override_methods_1.rb , type it in your text editor and execute it.

override_methods_1.rb

class Fixnum
def + a

416
end

end

puts 3+5
puts 7+12

Result

416
416

Look at the result, aren't you surprised? When three and five are added the result you get is 416 and

when 7 and 12 are added, once again the result is 416. Take a look at the blackened or highlighted

code in the Fixnum class. To make your reading convenient, here is the code:

def + a
416

end

In it we have redefined the method + in Fixnum class. In it, we have said no matter what ever be the

value of a (that is number that is at the right side of + sign in addition,) we must return a value of

416, so the Ruby interpreter simply obeys it.

Fixnum is a core class of Ruby, in many programming languages (for example Java) , one does not

have the luxury to modify the core class as Ruby allows it to do. Many authors and programming

gurus who have written books about Ruby have called this Ruby feature as a dangerous one, its

dangerous indeed, if you do modify a important class in Ruby and if our code is buried deep in a

97

https://raw.github.com/mindaslab/ilrx/master/override_methods_1.rb

I Love Ruby 2015 Beta

project, some times it can result in severe logical errors in our program and sometimes may cost lot

of resource waste as one needs to bury himself to debug the code. So before overriding methods in a

important or core class please think, and then do make a leap.

The super function
See the program below

#!/usr/bin/ruby
class_super.rb

class Rectangle

def set_dimension length, breadth
@length, @breadth = length, breadth

end

def area
@length * @breadth

end

end

class Square < Rectangle

def set_dimension side_length
super side_length, side_length

end

end

square = Square.new
square.set_dim 7
puts "Area: #{square.area}"

Output

Area: 49

In the program you see a Rectangle class, in it you see a function called set_dimension as

highlighted below. This function receives two arguments length and breadth, which is assigned to

class variables @length and @breadth in this line @length, @breadth = length, breadth

class Rectangle

def set_dimension length, breadth
@length, @breadth = length, breadth

end

def area
@length * @breadth

98

https://raw.github.com/mindaslab/ilrx/master/class_super.rb

I Love Ruby 2015 Beta

end

end

Now see the class Square. Square inherits Rectangle as all squares are rectangles (whos lengths

and breadths are equal), but not the other way around. Now note the highlighted part in the piece of

code below

class Square < Rectangle

def set_dimension side_length
super side_length, side_length

end

end

You can see that the Square class has its own set_dimension method, now look what it has, it has

a new stuff, look at the line that shows super side_length, side_length , (the bold line in code

above,) here we call a new method called super. super is a special method, if you call it in

set_dimension, it will see if the parent class has the method with the same name, if yes it calls the

method. Hence super here will call the set_dimension in Rectangle and will pass side_length

to length thus setting it to @length , and side_length to breadth, thus setting it to @breadth

respectively.

A rectangle who's @length and @breadth are equal is a square! Isn't it not, think!!!

Extending class
Ruby lets the programmer to extend preexisting classes in (almost) any way you want, it doesn't

matter if the classes are written by you or bundled into the Ruby language itself. In the following

example we will be extending Fixnum class to suit our needs. Type the program into text editor and

execute it

extending_class.rb

class Fixnum
def minute

to_s.to_i * 60
end

def hour
to_s.to_i.minute * 60

end

99

https://raw.github.com/mindaslab/ilrx/master/extending_class.rb

I Love Ruby 2015 Beta

def day
to_s.to_i.hour * 24

end

def week
to_s.to_i.day * 7

end
end

puts Time.now + 2.week

Result

Wed Apr 07 16:55:44 +0530 2010

The program puts what would be Time exactly 2 weeks from current second, note that we do it by

this statement :

puts Time.now + 2.week

The Time.now gets the current Time instance, to which we add 2.week. In reality, the native

Fixnum class has no method named week in it but see in the program we have defined a Fixnum

class which has method name week, when its called it returns number of seconds in a week which

can be added or subtracted to time object to get past and future time.

In a similar fashion you can extend any class in Ruby, you can override almost any method. Of

course some programmers (who like to be called as professionals) see this as a threat as some

accidental changes might introduce a bug in your code, but if you truly love Ruby this shouldn't

matter a lot.

Reflection
Reflection is a process by which a computer program can analyze itself and modify it on the go. In

the following pages we will just be scratching its surface. If time willing I will add meta

programming section in this book where I can discuss more. Right now I don't really know what

meta programming is.

OK, so lets jump in. We will try out these examples in irb , so in your terminal type irb –simple-

prompt . In the irb prompt below I have declared a String variable a and set it to a value “Some

string”

>> a = "Some string"
=> "Some string"

Now lets see that what methods are available with variable that we can use. To do so type

100

I Love Ruby 2015 Beta

a.methods in irb

>> a.methods
=> ["upcase!", "zip", "find_index", "between?", "to_f", "minmax", "lines",
"sub", "methods", "send", "replace", "empty?", "group_by", "squeeze", "crypt",
"gsub!", "taint", "to_enum", "instance_variable_defined?", "match", "downcase!",
"take", "find_all", "min_by", "bytes", "entries", "gsub", "singleton_methods",
"instance_eval", "to_str", "first", "chop!", "enum_for", "intern", "nil?",
"succ", "capitalize!", "take_while", "select", "max_by", "chars", "tr!",
"protected_methods", "instance_exec", "sort", "chop", "tainted?", "dump",
"include?", "untaint", "each_slice", "instance_of?", "chomp!", "swapcase!",
"drop", "equal?", "reject", "hex", "minmax_by", "sum", "hash",
"private_methods", "all?", "tr_s!", "sort_by", "chomp", "upcase", "start_with?",
"unpack", "succ!", "enum_slice", "kind_of?", "strip!", "freeze", "drop_while",
"eql?", "next", "collect", "oct", "id", "slice", "casecmp", "grep", "strip",
"any?", "delete!", "public_methods", "end_with?", "downcase", "%", "is_a?",
"scan", "lstrip!", "each_cons", "cycle", "map", "member?", "tap", "type", "*",
"split", "insert", "each_with_index", "+", "count", "lstrip", "one?",
"squeeze!", "instance_variables", "__id__", "frozen?", "capitalize", "next!",
"each_line", "rstrip!", "to_a", "enum_cons", "ljust", "respond_to?", "upto",
"display", "each", "inject", "tr", "method", "slice!", "class", "reverse",
"length", "enum_with_index", "rpartition", "rstrip", "<=>", "none?",
"instance_variable_get", "find", "==", "swapcase", "__send__", "===", "min",
"each_byte", "extend", "to_s", "rjust", "index", ">=", "size", "reduce", "tr_s",
"<=", "clone", "reverse_each", "to_sym", "bytesize", "=~",
"instance_variable_set", "<", "detect", "max", "each_char", ">", "to_i",
"center", "inspect", "[]", "reverse!", "rindex", "partition", "delete", "[]=",
"concat", "sub!", "dup", "object_id", "<<"]

As you can see a.methods returns the methods / functions that can be used upon a String. Next we

will try out and find what class or type a belongs. Of course we know that it belongs to String type,

but for the sake of learning to program type a.class into irb

>> a.class
=> String

and it faithfully returns that a is of the type String.

Fine we have seen some thing about reflection till now. To understand it better lets define our own

class and see how reflection works upon it. Type the program (below) reflection.rb into a text editor

and execute it.

reflection.rb

class Someclass
attr_accessor :a, :b

private
A dummy private method
def private_method
end

protected

101

https://raw.github.com/mindaslab/ilrx/master/reflection.rb

I Love Ruby 2015 Beta

A dummy protected method
def protected_method
end

public
A dummy public method
def public_method
end

end

something = Someclass.new
something.a = 'a'
something.b = 123
puts "something belongs to #{something.class}"
puts
puts "something has the following instance variables:"
puts something.instance_variables.join(', ')
puts
puts "something has the following methods:"
puts something.methods.join(', ')
puts
puts "something has the following public methods:"
puts something.public_methods.join(', ')
puts
puts "something has the following private methods:"
puts something.private_methods.join(', ')
puts
puts "something has the following protected methods:"
puts something.protected_methods.join(', ')

Output

something belongs to Someclass

something has the following instance variables:
@a, @b

something has the following methods:
inspect, protected_method, tap, clone, public_methods, __send__, object_id,
instance_variable_defined?, equal?, freeze, extend, send, methods,
public_method, hash, dup, to_enum, instance_variables, eql?, a, instance_eval,
id, singleton_methods, a=, taint, enum_for, frozen?, instance_variable_get,
instance_of?, display, to_a, method, b, type, instance_exec, protected_methods,
==, b=, ===, instance_variable_set, kind_of?, respond_to?, to_s, class, __id__,
tainted?, =~, private_methods, untaint, nil?, is_a?

something has the following public methods:
inspect, tap, clone, public_methods, __send__, object_id,
instance_variable_defined?, equal?, freeze, extend, send, methods,
public_method, hash, dup, to_enum, instance_variables, eql?, a, instance_eval,
id, singleton_methods, a=, taint, enum_for, frozen?, instance_variable_get,
instance_of?, display, to_a, method, b, type, instance_exec, protected_methods,
==, b=, ===, instance_variable_set, kind_of?, respond_to?, to_s, class, __id__,
tainted?, =~, private_methods, untaint, nil?, is_a?

something has the following private methods:

102

I Love Ruby 2015 Beta

exit!, chomp!, initialize, fail, print, binding, split, Array, format, chop,
iterator?, catch, readlines, trap, remove_instance_variable, getc,
singleton_method_added, caller, putc, autoload?, proc, chomp, block_given?,
throw, p, sub!, loop, syscall, trace_var, exec, Integer, callcc, puts,
initialize_copy, load, singleton_method_removed, exit, srand, lambda,
global_variables, gsub!, untrace_var, open, `, system, Float, method_missing,
singleton_method_undefined, sub, abort, gets, require, rand, test, warn, eval,
local_variables, chop!, scan, raise, printf, set_trace_func, private_method,
fork, String, select, sleep, gsub, sprintf, autoload, readline, at_exit,
__method__

something has the following protected methods:
protected_method

You must have got pretty big output as shown above. Lets now walkthru the code. First we define a

class called Someclass in which we have two attributes / class variables a and b. We have a private

method called private_method , protected method called protected_method and public method

called public_method.

After defining the class we create a variable called something of the type Someclass and give

values to its attributes in the following lines

something = Someclass.new
something.a = 'a'
something.b = 123

Next we ask the ruby interpreter to print the class of variable something using the following

statement puts "something belongs to #{something.class}" which it faithfully does and so

we get the following output:

something belongs to Someclass

Next we would like to know that if something which is an object of type Someclass has any

instance variables. To know it we command as

puts "something has the following instance variables:"
puts something.instance_variables.join(', ')

for which we get the following output

something has the following instance variables:
@a, @b

Next we would like to know what methods are there with something that can be used. To know that

we can use the methods function, so we write the following code:

puts "something has the following methods:"
puts something.methods.join(', ')

In the above code something.methods returns an array of methods, this must be converted to a

string which is done by the join method. The elements of the array are joined by the String passed

103

I Love Ruby 2015 Beta

to the join method. Notice that there are more methods than we have defined, thats because even

Someclass is of type Object34 which itself has many methods of its own. In Ruby everything is a

Object!

The methods and public_methods of any Object returns the same result. So we will skip the

discussion on these

puts "something has the following public methods:"
puts something.public_methods.join(', ')

statements

Next we want to know what are the private, public and protected methods are, that are in

Someclass, since something belongs to Someclass, private methods can be got using

private_methods function, thus by giving the following statements

puts "something has the following private methods:"
puts something.private_methods.join(', ')

We are able to get private methods in some class.

Similarly protected methods are got by using protected_methods function which I won't discuss

due to my laziness.

Encapsulation
You must have taken a capsule tablet in some point of time in your life. In it the medicine is packed

inside a gelatin capsule. When you take it with water it slides to your stomach where water breaks

out the gelatin layer releasing the medicine in it which cures your body of ailments. If you try to

swallow the medicine without the capsule it will be a bitter experience.

In similar fashion modern programing language allows you to hide unwanted details and let your

fellow programmer look only at the needed details. This technique is called encapsulation which

when properly implemented will result in producing clean code and one thats easy to use.

Another great example of encapsulation is your car. Under the hood your car has thousands of parts

that turn this way and that way, yet all you need to do is to turn on the key and operate the steering

wheel and pedals35 to get a driving experience. There is no need for you to bother what goes on

behind the hood.

34 Object is one of the most fundamental class in Ruby upon which almost all other classes are built upon. All classes
implicitly inherit Object

35 Gears are slowly being eliminated in todays cars

104

I Love Ruby 2015 Beta

Lets see a small example that will explain to us how encapsulation works. Type out the program

encapsulation.rb in your text editor and execute it.

encapsulation.rb

class Human
attr_reader :firstname, :lastname

def name=(name)
@firstname, @lastname = name.split

end
end

guy = Human.new
guy.name = "Ramanuja Iyengaar"
puts "First name: #{guy.firstname}"
puts "Last name: #{guy.lastname}"

Output

First name: Ramanuja
Last name: Iyengaar

So we get the first name of the person as Ramanuja and last name as Iyengar. These two lines are

printed out due to the following statements

puts "First name: #{guy.firstname}"
puts "Last name: #{guy.lastname}"

See the two lines before these statements. First we declare a new variable named guy of the type

human by writing guy = Human.new , next we set guy.name = "Ramanuja Iyengaar" , but in the

first puts statement we call guy.firstname and in the next one we call guy.lastname and we get

the answers! This is because inside the program in the method called name (see highlighted code)

we split it and assign the word before space as @firstname and word after space as @lastname

using the following piece of code:

@firstname, @lastname = name.split

So when we call guy.firstname and guy.lastname it gets printed faithfully. Note that outside the

class we never set the @first_name and @last_name, it was totally encapsulated from us.

One might be wondering what the statement attr_reader :firstname, :lastname does? It declares two

variables @first_name and @last_name. The attr_reader signifies that the two variables can only

be read by program outside the class, in other words if we try to set guy.first_name =

“Ramanuja” the Ruby interpreter will throw out an error.

105

https://raw.github.com/mindaslab/ilrx/master/encapsulation.rb

I Love Ruby 2015 Beta

Polymorphism
Poly means many, and morphis means forms. I think its either in Greek or Latin, who cares? In

programming language you can use one thing to do many things, lets see a few examples. Lets take

the humble plus sign. When we take “Hello ” and “World!” and put a plus sign in between, the

output is “Hello World!”. In technical talk we call this concatenation (joining together). Why there

are so many difficult words to learn when you want to be programmer? Who knows? Possibly

speaking some non-understandable blah blah might make you look intelligent, possibly fetch higher

pay. So here is the irb example:

>> "Hello " + "World!"
=> "Hello World!"

Now lets use this plus sign on numbers. We now stick it between 134 and 97. When we do that we

get the answer as 231 and not as 13497. Why? Its because the plus sign is trained to do different

things when its stuck in between different things.

>> 134 + 97
=> 231

When you stick it in between String's36 it joins them, when you stick it in between numbers it adds

them. So the operator plus takes many forms or does different operations depending upon the

situation.

In a similar way what will happen if we multiply a string by a number. Well when we do it as shown

below

>> "Hello"*5
=> "HelloHelloHelloHelloHello"

we see that string is printed the number of times. So multiplying “Hello” by 6 prints “Hello” six

times. In the next example we assign value six to a variable named hello and multiply it by five

>> Hello = 6
=> 6
>> Hello*5
=> 30

Since hello is a variable that carries a number, multiply it, results is a number. So you see even an

multiplication operator takes many forms or different functions depending on the situation. Its like

this a policeman when at home is kind with his family, when he is made to take a thud he behaves in

a different way.

In a similar way the length operator / function, when you are finding out the length of a string, it

36 A piece of text

106

I Love Ruby 2015 Beta

tells the number of characters in it.

>> "some text".length
=> 9

When you are finding the length of an array it tells the number of elements the array has.

>> [5, 7, "some text", Time.now].length
=> 4

So we see that in Ruby, a thing can do different things, just like an real world object does37.

Class Constants
Just like any other programming language, one can have a constant values in a class in Ruby. Lets

jump into action, take a look at the following program class_constant.rb , it source code is like

this

#!/usr/bin/ruby
class_constant.rb

class Something
Const = 25

end

puts Something::Const

Output

25

Note the pieces of code I have darkened. In the class Something, you see the statement Const =

25. If you were reading this book well, you might realize that constant in Ruby starts with a capital

letter. In the class Something, we have declared a constant names Const and assigned it to 25.

Note the statement puts Something::Const . puts is for printing almost anything thrown at it.

Here we throw Something::Const and it faithfully prints out the constant value. So class constants

can be access by <class_name>::<constant_name> , this is how you access constants of a class.

Let's see how class instance can access a class constant. Type the program class_constant_1.rb

#!/usr/bin/ruby
class_constant.rb

class Something
Const = 25

end

37 Like nuclear energy can be used to explode an atomic bomb or power an entire city, depending on what humans
decide to do with it

107

https://raw.github.com/mindaslab/ilrx/master/class_constant.rb
https://raw.github.com/mindaslab/ilrx/master/class_constant.rb

I Love Ruby 2015 Beta

puts Something::Const
s = Something.new
puts s.Const

Output

25
class_constant_1.rb:10: undefined method `Const' for #<Something:0xb745eb58>
(NoMethodError)

So in this program (above) we have declared a variable s whose class is Something. In line puts

s.Const , we try to access the constant value inside something via its instance variable s and we get

a No Method Error, or the Ruby interpreter thinks Const is a method since we use s dot Const. To

fix this issue, you can write a method called Const and call it as shown in class_constant_2.rb

#!/usr/bin/ruby
class_constant_2.rb

class Something
Const = 25

def Const
Const

end
end

puts Something::Const
s = Something.new
puts s.Const

Output

25
25

So defining a method38 and returning Const from it solves the problem.

Some might think one can access class constant value using the instance variable by using double

colon (::) instead of the dot operator as shown in class_constant_3.rb , well it wont work as you

can see from its output

#!/usr/bin/ruby
class_constant_3.rb

class Something
Const = 25

def Const
Const

end
end

38 It's not necessary that the method should have the same name as the constant.

108

https://raw.github.com/mindaslab/ilrx/master/class_constant_3.rb
https://raw.github.com/mindaslab/ilrx/master/class_constant_2.rb

I Love Ruby 2015 Beta

puts Something::Const
s = Something.new
puts s::Const

Output

25
class_constant_3.rb:14: #<Something:0xb74029fc> is not a class/module
(TypeError)

109

I Love Ruby 2015 Beta

Breaking large programs
Its not that you will be writing professional programs that are all in a single file. You need to break

them up into small chunks, put those chunks into sperate files and include them in other programs

as one needs. So lets see an example

break_full.rb

class Square
 attr_accessor :side_length

 def perimeter
 @side_length * 4
 end
end

s = Square.new
s.side_length = 5
puts "The squares perimeter is #{s.perimeter}"

Output

The squares perimeter is 20

So you see the above program named break_full.rb , that has a class definition and then a snippet

of code that uses the definition to calculate perimeter of square of side 5 units. Isn't it logical that if

the Square code can go into a separate file, so that it can be required where it needs to be, possibly

in many other programs? If a program gets large we can divide them up into smaller files and name

them logically so that its easy to read and debug.

So following this principle, I have broken this program into two, the first one is break_square.rb

as shown below, this just has the Square class definition

break_square.rb

class Square
 attr_accessor :side_length

 def perimeter
 @side_length * 4
 end
end

Now see the program called break_main.rb below,

break_main.rb

110

https://raw.githubusercontent.com/mindaslab/ilrx/master/break_main.rb
https://raw.githubusercontent.com/mindaslab/ilrx/master/break_square.rb
https://raw.githubusercontent.com/mindaslab/ilrx/master/break_full.rb

I Love Ruby 2015 Beta

require "./break_square.rb"

s = Square.new
s.side_length = 5
puts "The squares perimeter is #{s.perimeter}"

Output

The squares perimeter is 20

See the line require "./break_square.rb" , now that does the trick, the ./break_square.rb

represents the path where break_sqare.rb is located. The ./ means search in this very folder. So

once the program gets the file break_square.rb , it simply kinda inserts the code in its position

and ass works the same as break_full.rb , but now the code is logically divide and possibly easy

to maintain.

111

I Love Ruby 2015 Beta

Struct and OpenStruct
Okay, in the last chapter we have seen about classes, now lets see something simple called struct39.

If its simple, why not write about I before? The answer is simple,I never knew struct before and I

don't want one to use struct in serious programming. Why? Because I feel they are not

hmmmm...........

We will quickly see some examples and I will close the chapter. Type the following program and

execute it

struc_start.rb

person = Struct.new :name, :age
p = person.new
p.name = "Karthik"
p.age = 30

puts "Hello, I am #{p.name}, age #{p.age}"

Output

Hello, I am Karthik, age 30

Well, now lets see how it works. First you are creating a new type of struct using this statements.

Struct.new :name, :age

Now you want to name it, so that you can use it, lets name it as person

person = Struct.new :name, :age

Once named, this variable person will act like a class or some thin, you can declare a new instance

of it like this

p = person.new

In the above statement p is the instance of person.

Now we can assign :name and :age of p using the following statements

p.name = "Karthik"
p.age = 30

Then you can print the data like shown below

puts "Hello, I am #{p.name}, age #{p.age}"

39 Its kind of struct you see in C++, but its much simpler

112

https://raw.github.com/mindaslab/ilrx/master/struct_start.rb

I Love Ruby 2015 Beta

Thats it. Without much clas thing and blah blah, you have created a data structure and used it! Don't

you think its great!!

Its not that person in person = Struct.new :name, :age should be variable (i.e start with lower

case), but it could also be a constant like Person. Thats what exactly is going on in the next piece of

code here

struct_constant.rb

Person = Struct.new :name, :age
p = Person.new
p.name = "Karthik"
p.age = 30

puts "Hello, I am #{p.name}, age #{p.age}"

Output

Hello, I am Karthik, age 30

So in these lines

Person = Struct.new :name, :age
p = Person.new

look at the highlighted part, we have used Person with capital P and the code works!

If you are worried about the fact that you need to typed a lot in the previous program you can

shorten it as shown below. Just take a look at the highlighted line.

struct_one_line.rb

person = Struct.new :name, :age
p = person.new "Karthik", 30

puts "Hello, I am #{p.name}, age #{p.age}"

Output

Hello, I am Karthik, age 30

We get the same output but in this one line

p = person.new "Karthik", 30

We have managed to eliminate these two lines

p.name = "Karthik"
p.age = 30

113

https://raw.github.com/mindaslab/ilrx/master/struct_one_line.rb
https://raw.github.com/mindaslab/ilrx/master/struct_constant.rb

I Love Ruby 2015 Beta

If you have noticed it right, doesn't p = person.new "Karthik", 30 look like a constructor40 stuff

in classes?

Its not that a struct is just limited to its attribute data structure. You can ave function that a struct

instance could call as shown below program. Type it and execute it.

struct_about_me.rb

person = Struct.new :name, :age do
 def about_me
 "Hello, I am #{self.name}, age #{self.age}"
 end
end
p = person.new "Karthik", 30
puts p.about_me

Output

Hello, I am Karthik, age 30

As you can see, there is a function called about_me defined between the do end block of the struct.

We declare a person p in this line p = person.new "Karthik", 30 and call the about_me

function on p like this puts p.about_me and the progra works fine. You must also note that we can

pass arguments to functions in struct, but I haven't shown that example due to my laziness.

Now lets see how to do structure in a wrong way. Type the program below and execute it

struct_wrong.rb

person = Struct.new :name, :age
p = person.new
p.name = "Karthik"
p.age = 30
p.profession = "Engineer"

puts "Hello, I am #{p.name}, age #{p.age}, and I am on a #{p.profession}"

Output

struct_wrong.rb:7:in `<main>': undefined method `profession=' for #<struct name="Karthik",

age=30> (NoMethodError)

If you get the kind of output as shown above, it means that you have typed the program rightly

wrong. The problem is in the highlighted line p.profession = "Engineer" , we are assigning

data to a attribute named profession which we haven't declared in the struct person =

Struct.new :name, :age . So it throws an error. To avoid these kind of things, you can use a

40 If you don't understand what this is, read Encyclopedia Britannica in Hebrew.

114

https://raw.github.com/mindaslab/ilrx/master/struct_wrong.rb
https://raw.github.com/mindaslab/ilrx/master/struct_about_me.rb

I Love Ruby 2015 Beta

Open Struct as shown in program below

open_struct.rb

require 'ostruct'

p = OpenStruct.new
p.name = "Karthik"
p.age = 30
puts "Hello, I am #{p.name}, age #{p.age}"

Output

Hello, I am Karthik, age 30

Open Struct is like struct, but its does not has its data structure or attributes predefined. Now I am

lazy, so think that I have explained the program above to you.

115

https://raw.github.com/mindaslab/ilrx/master/open_struct.rb

I Love Ruby 2015 Beta

Rdoc
You are reading this book because you are looking for some kind of documentation to start

programming in Ruby. Documentation is highly important in any kind of programming. Keeping a

good documentation for the piece of code you write might distinguish you from a good programmer

and make you the one who is sought after. This chapter tells you two things, first where are Ruby's

core documentation, and how to find it and read it. The second, it teaches you how to generate

documentation so that others can better understand your program.

Reading Ruby Documentation
Lets say that you want to know about String class in Ruby program. You want to know how to

count number of character in ones name using Ruby, so how to do it? Visit this link http://ruby-

doc.org/ , its the centralized place where ruby documentations are available. Now if you can go

through it a bit you will find a thing / link like: 2.1. 4 core - Core API docs for Ruby 2.1.4. Click on

it and you will be directed to this link: http://ruby-doc.org/core-2.1.4/ , its here where core libraries

for 2.1.4 are documented.

A question may arise, how to find out the version of ruby you are using? In terminal type ruby ­v

it will throw out an output like this: ruby 1.9.3p194 (2012­04­20 revision 35410) [x86_64­

linux] , look at the highlighted piece of code, this tells me that I am using ruby 1.9.3p194. Who the

heck cares what p194 is? I know I am using ruby 1.9.3, so I am going to see its documentation!

OK, in http://ruby-doc.org/core-2.1.4/ you need to browse for String, if you do you will find this

link: http://ruby-doc.org/core-2.1.4/String.html , this is where the String class documentation is. You

can get to this documentation in this long long (going through almost everything) way or by typing

String in the top search bar in which case Rdoc will display valid search results.

The image below shows I am filtering the classes in Ruby by typing Sting into a text box labeled

Classes. This will help me to filter the results / classes easily.

116

http://ruby-doc.org/core-2.1.4/String.html
http://ruby-doc.org/core-2.1.4/
http://ruby-doc.org/core-2.1.4/
http://ruby-doc.org/core-2.1.4/
http://ruby-doc.org/core-2.1.4/
http://ruby-doc.org/core-2.1.4/
http://ruby-doc.org/
http://ruby-doc.org/

I Love Ruby 2015 Beta

OK then, if you have got it right, click on the String to get you here http://ruby-doc.org/core-

2.1.4/String.html and browse down, you will find something called #length which when clicked will

scroll here http://ruby-doc.org/core-2.1.4/String.html#method-i-length , so it does say we have a

thing / function / method called length and another thing called size.

From an educated guess we must be able to know that this is what gives the length of a String, lets

try it out on irb

$ irb ­­simple­prompt
>> "Karthikeyan A K".length
=> 15
>> "Karthikeyan A K".size
=> 15

So it works! The basic thing is to reach http://ruby-doc.org/ and break your head, that will get

something going and will get you started knowing to read Ruby documentation.

Creating Documentation
So hopefully or hopelessly you might or might not know read ruby's documentation. Lets see how

to create one. OK, type the code below in a document called rdoc_square.rb , or whatever name you

prefer. For simplicity put it into a folder and make sure that no other file is present in that folder.

#rdoc_square.rb

This class Square takes in side_length (of type float or fixnum)

117

https://raw.github.com/mindaslab/ilrx/master/rdoc_example/rdoc_square.rb
http://ruby-doc.org/
http://ruby-doc.org/core-2.1.4/String.html#method-i-length
http://ruby-doc.org/core-2.1.4/String.html
http://ruby-doc.org/core-2.1.4/String.html

I Love Ruby 2015 Beta

as argument
class Square

The length of a square's side
attr_accessor :side_length

Retuns the area of the square
def area

@side_length * @side_length
end

Returns perimeter of the square
def perimeter

4 * @side_length
end

end

Notice how I have added comments41 before attributes and functions. Now navigate to that folder

(using console / terminal) where rdoc_square.rb is located and type this command rdoc , thats it,

the magic happens. You will find a folder named doc created, just navigate into the folder and open

document named index.html , you can then click on the Square link in Classes and Modules Index

box to get a nice documentation as shown.

In the picture above, in the Attributes section you can see the documentation for side_length

attribute, see just below that is the documentation for it that reads The length of a square's side.

Now check the code rdoc_example.rb check the two highlighted lines shown below

class Square

The length of a square's side

attr_accessor :side_length

41 Its possible to use markdown in Rdoc. To know about markdown visit https://en.wikipedia.org/wiki/Markdown

118

https://en.wikipedia.org/wiki/Markdown

I Love Ruby 2015 Beta

…....

end

We have just added a comment line before attr_accessor :side_length that appears on the

documentation page. Thats how, rdoc determines what to put for documentation. It just checks what

are the comments that occurs before the declaration of classes, variables and function definitions

and puts it into the documentation, packs it neatly, puts a nice CSS (that is styling) and Javascript

(thats for the dynamic effects42) and gives it to you ready to refer. You can distribute the code as

well as the doc folder to other for reference so that people will have better time understanding your

code without going through all the lines of ruby coding.

So these are the steps to generating a documentation

• Put commented ruby files into folder

• Navigate to the folder via terminal and type rdoc

• You will see a folder called doc created, just go into the folder and launch the file index.html

42 type something into search box and see

119

I Love Ruby 2015 Beta

Ruby Style Guides
So you have learned about basics of Ruby programming and must have probably know how to look

up Rdoc. This chapter will tell about Ruby style guides. Once every software company had a style

of coding, One when inducted into a company had to follow a huge manual which defined the style

of coding, that was hell.

As internet and collaboration flourished and evil Microsoft was beaten by free software43,

commonality developed, language started to have patterns that were defined more openly and in a

democratic way than controlled by few corporations and their satellite companies. So Ruby too has

its own style guides.

If you follow it, and if a fellow Rubyist sees your code, you could be a respected developer. You can

get all about Ruby style guides here https://github.com/bbatsov/ruby-style-guide . Hope you people

follow it to be a proud Rubyist.

43 http://fsf.org

120

https://github.com/bbatsov/ruby-style-guide
http://fsf.org/

I Love Ruby 2015 Beta

Modules and Mixins
When ever you think of modules, you think of a box or something. Just look at your printer. Its a

module. It can do some thing. It has things to do something. In a similar way modules in Ruby can

contain Ruby code to do something. Modules are way to pack Ruby code into possible logic units.

When ever you want to use the code in a module, you just include it in your Ruby program.

Lets look at our first module program called module_function.rb . The program below has two

modules namely Star, Dollar. Both these modules have the same function called line. Note that

in the function line in module Star, we print a line of 20 star (*) characters. In similar fashion in

function line in module Dollar we print a line of 20 dollar ($) characters. Type the program in

your text editor and execute it.

module_function.rb

module Star
def line

puts '*' * 20
end

end

module Dollar
def line

puts '$' * 20
end

end

include Star
line
include Dollar
line

Output

$$$$$$$$$$$$$$$$$$$$

Lets look at the program thats outside the module. We have the following code:

include Star
line
include Dollar
line

121

https://raw.github.com/mindaslab/ilrx/master/module_function.rb

I Love Ruby 2015 Beta

In the line include Star, we include the code thats in the Star module, then we call the function

line, so we get output as a line of 20 stars. Look at the next line, we include the module Dollar.

Dollar too has a function called line. Since this module is called after Star, the line function in

Dollar module over writes or in the right terms hides the line function in the Star module. Hence

calling line after include Dollar will execute code in the line function of Dollar module. Hence

we get a line of twenty dollar sign.

In the coming example module_function_0.rb we will see what happens when we call the line

function without including any module. Type the program below and execute it

module_function_0.rb

module Star
def line

puts '*' * 20
end

end

module Dollar
def line

puts '$' * 20
end

end

line

Output

module_function_0.rb:15:in `<main>': undefined local variable or method `line'
for main:Object (NameError)

As you can see that line is considered as undefined local variable or a method44. So we can say that

the functions in module can be accessed only if the module is included in your program.

Lets say that we write another module without any function but just code in it. I wrote the following

program module.rb just because I want to see what happens. As it turns out, when module is coded

in a Ruby file and executed, the code in module gets executed by default. This happens even if we

don't include the module.

44 Methods are another name for function

122

https://raw.github.com/mindaslab/ilrx/master/module_function_0.rb

I Love Ruby 2015 Beta

module.rb

module Something
puts "Something"

end

module Nothing
puts "Nothing"

end

Output

Something
Nothing

The output of the above program module.rb prints out Something and Nothing. We have put two

modules called Something which contains the code puts “Something” and another module

Nothing which contains puts “Nothing”. Though I haven't included these modules in my program

using include statement, the code under them gets executed anyway.

Calling functions without include

In the program module_function.rb , we have seen how to include module and call the

function(s) in it. We printed a line of stars and dollars. Lets do the same in a different way. This time

we wont be using the include keyword.

Type the program module_function_1.rb and execute it.

module_function_1.rb

module Star
def Star.line

puts '*' * 20
end

end

module Dollar
def Dollar.line

puts '$' * 20
end

end

Dollar::line
Star::line
Dollar::line

123

https://raw.github.com/mindaslab/ilrx/master/module_function_1.rb
https://raw.github.com/mindaslab/ilrx/master/module.rb

I Love Ruby 2015 Beta

Output

$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$

Take a look at the following code:

Dollar::line
Star::line
Dollar::line

When we call Dollar::line , the line function in Dollar module gets executed. When we call

Star::line , the line function in the Star module gets executed. Doesn't it look simple that to use

include statement? So when you want to call a function in module just use the following syntax

<module­name>::<function­name> .

Note that in module Star, we have defined the function line as Star.line and not just line.

Similarly in module Dollar we have defined it as Dollar.line.

OK, we are getting to know about modules, now lets get our hands really dirty. Type the code below

(module_function_2.rb) and execute it.

module_function_2.rb

module Star
def Star.line

puts '*' * 20
end

end

module Dollar
def Dollar.line

puts '$' * 20
end

end

module At
def line

puts '@' * 20
end

end

include At

124

https://raw.github.com/mindaslab/ilrx/master/module_function_2.rb

I Love Ruby 2015 Beta

Dollar::line
Star::line
Dollar::line
line

Output

$$$$$$$$$$$$$$$$$$$$

$$$$$$$$$$$$$$$$$$$$
@@@@@@@@@@@@@@@@@@@@

OK you have got some output. Take a look at the following lines

include At

Dollar::line
Star::line
Dollar::line
line

Note that we have included the module At at first (see highlighted code above) using the include

At statement. While executing the Dollar::line statement, we get an output of twenty dollars

which forms a line. While executing Star::line we get a output of twenty stars. Next we once

again call Dollar::line, then comes the catch. We just call the function line. Since we have

included At at first, when the statement line is encountered it calls the line method in At module

gets called. This shows that though we have called Dollar::line and Star::line , it does not

include45 the module code in the program, instead it just executes the particular function in the

module.

In module_function _1.rb , we have seen how we can call a function in a module say

Star::line , where Star is the module name and line is the function name. To do so in Star module

we have defined the function line as follows

def Star.line
puts '*' * 20

end

Where instead of naming it just line, we have named it Star.line. Note that

module_function_3.rb is similar to module_function_1.rb, but take a deep look into line function

in Dollar module. It is not named Dollar.line , instead its named Star.line . What will happen

45 Or mixin

125

I Love Ruby 2015 Beta

if we mess up the code like this? Execute the program below and see.

module_function_3.rb

module Star
def Star.line

puts '*' * 20
end

end

module Dollar
def Star.line

puts '$' * 20
end

end

module At
def line

puts '@' * 20
end

end

include At

Dollar::line
Star::line
Dollar::line
line

Output

@@@@@@@@@@@@@@@@@@@@
$$$$$$$$$$$$$$$$$$$$
@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@

Notice that whenever we call Dollar::line , the line function in At module is called. Its because

since we have defined it as Star.line in Dollar module, Dollar::line simply does not exist and

hence the function line in the At module is called. Note that we have included At module using

the statement include At.

We now consider another scenario where (see program module_function_4.rb) in the Dollar

module we just define the function line as line and not as Dollar.line. When we call it using

Dollar::line in the program below, we see that the line function in the At module gets called. So

the moral of the story is, if you are calling <module­name>::<function­name> in your program,

make sure that the function is named <module­name>.<function­name> inside the module.

126

https://raw.github.com/mindaslab/ilrx/master/module_function_3.rb

I Love Ruby 2015 Beta

module_function_4.rb

module Star
def Star.line

puts '*' * 20
end

end

module Dollar
def line

puts '$' * 20
end

end

module At
def line

puts '@' * 20
end

end

include At

Dollar::line
Star::line
Dollar::line
line

Output

@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@
@@@@@@@@@@@@@@@@@@@@

Classes in modules

We have seen how the Ruby interpreter behaves to functions in modules. Lets now see how it

behaves to classes in modules. Type the program below module_class.rb and execute it.

module_class.rb

module Instrument
class Ruler

def what_u_do?
puts "I take measurements"

end
end

end

127

https://raw.github.com/mindaslab/ilrx/master/module_class.rb
https://raw.github.com/mindaslab/ilrx/master/module_function_4.rb

I Love Ruby 2015 Beta

module People
class Ruler

def what_u_do?
puts "I govern this land"

end
end

end

r1 = People::Ruler.new
r2 = Instrument::Ruler.new

r1.what_u_do?
r2.what_u_do?

Output

I govern this land
I take measurements

Lets analyze the program. We have two modules. The first one is named Instrument, and the

second one is named People. Both have a class named Ruler and both Ruler's have method named

what_u_do? . Fine, now lets come to the program. We have a statement r1 = People::Ruler.new

in which r1 becomes an instance variable of Ruler class of People module. Similarly we have r2

= Instrument::Ruler.new in which r2 becomes instance variable of Ruler class in Instrument

module.

This can be verified by executing the following code

r1.what_u_do?
r2.what_u_do?

In which calling r1.what_u_do? outputs I govern this land and calling r2.what_u_do?

outputs I take measurements.

The moral of the story is you can have same class names in different modules, to call that class just

use <module­name>::<class­name> .

Mixins

Another use of modules is that you can mix code in modules as you wish. This one is called mixin.

We have already seen about mixins but I haven't told you that it was mixin. For example lets say

128

I Love Ruby 2015 Beta

that you are writing some application in Ruby for Linux and Apple machine. You find that some

code works only on Linux and other works only on Apple, then you can separate them as shown

below. The Apple stuff goes into Apple module and Linux stuff goes into the Linux module.

Lets say that your friend uses a Linux machine and wants to run your program. All you need to do is

to include Linux in your code as shown below.

mixin.rb

module Linux
Code for linux goes here
def function

puts "This function contains code for Linux systems"
end

end

module Apple
Code for apple goes here
def function

puts "This function contains code for Apple systems"
end

end

include Linux

function

Output

This function contains code for Linux systems

When the method function is called, the method function in Linux module will be called. In

short you have mixed in Linux code in your program and have kept out the Apple stuff.

Lets see another example of mixin. Take a look at the code mixin_2.rb below. Lets say that your

client tells that he is badly need of a program that computes the area of circle and volume of sphere.

So you develop two classes called Circle and Sphere and equip with code to find area and

volume. So your client is happy. Since your client is in Milkyway galaxy, the constant Pi46 is 22

divided by 7. So we have put the value of Pi in a module named Constants and have included in

Circle and Sphere class using the statement include Constants. Type in the program below and

execute it.

46 Pi is a mathematical constant used to find area of circle and volume of sphere. Unless you are Einstien, don't bother
about it.

129

https://raw.github.com/mindaslab/ilrx/master/mixin.rb

I Love Ruby 2015 Beta

mixin_2.rb

module Constants
Pi = 22.0/7

end

class Circle
include Constants
attr_accessor :radius

def area
Pi * radius * radius

end
end

class Sphere
include Constants
attr_accessor :radius

def volume
(4.0/3) * Pi * radius ** 3

end
end

c = Circle.new
c.radius = 7
s = Sphere.new
s.radius = 7
puts "Circle Area = #{c.area}"
puts "Sphere Volume = #{s.volume}"

Output

Circle Area = 154.0
Sphere Volume = 1437.333333333333

So you get something as output. You might ask whats so great in putting a constant in a module and

mixing it in a class using include statement. Well the above program teaches you two morals

• You can put constants in a module

• If you have common code47 that can be shared between classes, you can put it into module

and share it.

If you have defined the value of Pi separately in each class and if you happened to get a client from

Andromeda galaxy where Pi is 57 divided by 18.1364, you can make change just in one place, that

is in constants module and see the change reflect in many classes (Circle and Sphere classes in

47 Common functions and constants

130

https://raw.github.com/mindaslab/ilrx/master/mixin_2.rb

I Love Ruby 2015 Beta

our case).

Thus moral is modules help us to cater customers who are beyond our own galaxy and we can truly

build a galactic empire48.

48 Somewhat like a Star Wars thing. So if you have a dream to become Galactic Emperor, study Ruby.

131

I Love Ruby 2015 Beta

Shebang49

Lets say that you have written a ruby program called something.rb and want to run it. To run it, in

your console you must migrate to the directory in which its present and type in ruby

something.rb to execute it. Instead of doing such a tedious procedure why can I execute the

program by just typing its name like ./something.rb as you would do to execute a executable file.

Lets find out how to do it to a ruby program.

To do so we must find out where our Ruby interpreter is installed, for that we well query where is

Ruby as shown

$ whereis ruby
ruby: /usr/bin/ruby1.8 /usr/bin/ruby /usr/lib/ruby /usr/share/man/man1/ruby.1.gz

From experience on my Ubuntu system I can say my Ruby interpreter is in /usr/bin folder, I can call

it or execute it using the command /usr/bin/ruby. Fire up your text editor, type in the code shown

below and save it as shebang.rb

#!/usr/bin/ruby
shebang.rb

puts "Just put #!/usr/bin/ruby to make your Ruby programs
execute without using ruby before them"

Take a look at the first line thats been highlighted. The line is called shebang50, its starts with a

comment sign # followed by a exclamation mark ! Then its immediately followed by the path to the

Ruby interpreter. Thats it. Your rest of the program can follow as usual.

To execute the piece of file, we must first make this as an executable. We make it as executable

using the chmod a+x file_name as shown

$ chmod a+x shebang.rb

Once we have done it all we need to do is to type the filename as shown below

$./shebang.rb
Just put #!/usr/bin/ruby to make your Ruby programs
execute without using ruby before them

The ./ says that the file is in current working directory. Once we type the file name, due to the

shebang line the operating system passes the file to Ruby interpreter which is located in /usr/bin

49 Shebang does not work if you have installed ruby using the rvm
50 I think its inventor was banged by his girl while he was inventing this, so he may have named it “She Bang”

132

https://raw.github.com/mindaslab/ilrx/master/shebang.rb

I Love Ruby 2015 Beta

and the interpreter faithfully executes the program.

Date and Time
Ruby has got ways by which we can extract time and date from our computer clock. All modern day

personal computers has got a thing called RTC or real time clock which is powered by a battery and

would maintain the time even if the machine is turned off. Many programming languages let us

access this clock and do manipulation with date and time. Lets see how to work with Ruby. Lets do

this stuff in our irb rather than writing programs into a file

The first thing we do is to find whats the time now? For that just type Time.now in your irb, thats

it. You will get the current time.

>> Time.now
=> Thu Feb 25 16:54:45 +0530 2010

Time.now is a synonym to Time.new which creates a new Time object. You can use Time.now or

Time.new , both will give the same result.

>> Time.new
=> Thu Feb 25 16:54:48 +0530 2010

In the following command, we create a new time object / instance and assign it to a variable t

>> t = Time.new
=> Thu Feb 25 16:55:02 +0530 2010

Now having assigned, how to view the value of t? We will use the inspect method. So by typing

t.inspect , we can inspect whats in t.

>> t.inspect
=> "Thu Feb 25 16:55:02 +0530 2010"

t.inspect converts the time object to a string and displays to us. The same thing can be done by

to_s (to string) function as shown below

>> t.to_s
=> "Thu Feb 25 16:55:02 +0530 2010"

t.year retrieves the year in time object

>> t.year
=> 2010

t.month retrieves the month in time object

>> t.month

133

I Love Ruby 2015 Beta

=> 2

t.day retrieves the day (in that month) in time object

>> t.day
=> 25

t.wday retrieves the day's number. Here 0 means Sunday, 1 → Monday, 2 → Tuesday and so on till

6 means Saturday

>> t.wday
=> 4

In above code snippet, the day was Thursday

t.yday retrieves the day in that year. For example 1st of February is the 32nd day in the year

>> t.yday
=> 56

t.hour retrieves the hour in the time object. The hour is 24 hour format

>> t.hour
=> 16

t.min retrieves the minutes value in time object

>> t.min
=> 55

t.sec retrieves the seconds in time object

>> t.sec
=> 2

t.usec retrieves microseconds in the time object. This will be useful if you are commissioned to

write a stopwatch application for Olympics.

>> t.usec
=> 357606

t.zone retrieves the zone. I am in India, we follow Indian Standard Time here, its spelled IST for

short

>> t.zone
=> "IST"

There is a thing called UTC or Universal Time Coordinate. Its the time thats at longitude 0o . The

t.utc_offset displays the number of seconds your time is far away from the time at UTC.

>> t.utc_offset
=> 19800

From the above example, I came to know that a person living at Greenwich will see sunrise after

19800 seconds after I have seen.

DST means daylight saving time. I don't know what it is. If your timezone has a daylight saving,

134

I Love Ruby 2015 Beta

this function returns true, else false

>> t.isdst
=> false

If your timezone is UTC, the t.utc returns true or returns false

>> t.utc?
=> false

If you want to get the local time just call the local time function as shown. We want t to hold local

time value in this case

>> t.localtime
=> Thu Feb 25 16:55:02 +0530 2010

In same way as local time, the gmtime function gets the Greenwich Meridian Time.

>> t.gmtime
=> Thu Feb 25 11:25:02 UTC 2010

The getlocal function is the alias of local time

>> t.getlocal
=> Thu Feb 25 16:55:02 +0530 2010

The getutc function is alias of gmtime. Actually gmtime is alias of getutc

>> t.getutc
=> Thu Feb 25 11:25:02 UTC 2010

The ctime function formats the time to somewhat human readable form.

>> t.ctime
=> "Thu Feb 25 11:25:02 2010"

Lets say we want to subtract some seconds from the time value t, we can do it as shown. Below we

subract 86400 seconds (1 day) from our time value

>> t ­ 86400
=> Wed Feb 24 11:25:02 UTC 2010

Days between two days
Lets now write a code snippet that finds the number of days between February 25th 2010 to May 1st

2010, first we declare a variable a and assign it with the day February 25th 2010 as shown

>> a = Time.local 2010, 2, 25
=> Thu Feb 25 00:00:00 +0530 2010

Notice we use a function called local in Time class or object, we can assign a date to it. As we

could see in the output, we get to know that variable a now has the value of February 25th . In

similar fashion we create a variable b and assign it with date 1st of May 2010

>> b = Time.local 2010, 5, 1
=> Sat May 01 00:00:00 +0530 2010

135

I Love Ruby 2015 Beta

All we do now is subtract a from b

>> b­a
=> 5616000.0

This gives number of seconds between a and b. We divide the result by 86400 (thats how many

seconds that are in a day)

>> days = _ / 86400
=> 65.0

We get a result as 65. Cool!

How many days have you lived?
Lets now see a program that takes in your birthday and prints out how many days have you lived.

Type in the program in text editor and execute it

#!/usr/bin/ruby
how_many_days.rb

print "Enter birthday (YYYY­MM­DD):"
bday = gets.chop
year, month, day = bday.split('­')
puts " #{year}, #{month}, #{day}"
seconds = Time.now ­ Time.local(year, month, day)
days = (seconds / 86400).round
puts "You have lived for #{days} days"

Here is the result

Enter birthday (YYYY­MM­DD):2000­5­23
You have lived for 3566 days

Well this may vary on when you execute this program. Lets now analyze it. In the first line

print "Enter birthday (YYYY­MM­DD):"

We ask the user to enter his or her birthday, once done we perform a trick here. We asked the user

to enter it in YYYY-MM-DD format, in the statement

bday = gets.chop

We get the date and store it in a variable called bday. The gets.chop gets the birth day and chops

off the enter sign we enter with it. So bday now holds the string value of birthday you entered. In

the next statement

year, month, day = bday.split('­')

we have a multiple assignment in which I have three variables year, month and day. I am splitting

the birthday string and assigning it. What really happens is this, if we enter a date like 1994-6-24 it

gets split by – and becomes an array which is shown in code snippet below executed in irb

136

https://raw.github.com/mindaslab/ilrx/master/how_many_days.rb

I Love Ruby 2015 Beta

>> "1994­6­24".split '­'
=> ["1994", "6", "24"]

Lets assign this array to variables a, b, c simultaneously as shown

>> a, b, c = _
=> ["1994", "6", "24"]

If you remember _ (underscore) means the last obtained result in irb. So having assigned it we now

check values of a, b and c which we get as shown....

>> a
=> "1994"
>> b
=> "6"
>> c
=> "24"

Isn't ruby spectacular? In similar fashion in

year, month, day = bday.split('­')

The year variable gets the year part, the month gets the month and day gets the day. OK having

obtained the parameters of a particular day we can proceed. Examine the following statement

seconds = Time.now ­ Time.local(year, month, day)

See the right hand side of the equal to sign, first we have Time.now which gets the current time,

from it we are subtracting a time object thats been created using Time.local. Time.local can be

used to create a time object thats fixed at any instance, the instance can be past, present or future.

We pass the year month and day to it to create a Time object. What happens when we subtract these

both, we get the difference in seconds which gets stored in variable called seconds at the left hand

side of the equation.

 All we need to do now is to convert the second to days which is done by the following statement

days = (seconds / 86400).round

Here we divide seconds by 86400 which converts them to days. We might be getting some value

like 378.567 days, to get rid of the .567 we round it off using the round function, so (seconds /

86400).round returns a neat rounded value which can be read by humans quiet easily. We store

the value in a variable called days. Finally we print the fact that we have lived for so many long

days using the following statement

puts "You have lived for #{days} days"

Well thats it.

I would like to tell one thing I found out with Time.local function, its not that we must pass only

numbers to it as shown

137

I Love Ruby 2015 Beta

>> Time.local "2010", "5", "1"
=> Sat May 01 00:00:00 +0530 2010

We can pass a bit human friendly values as shown below. Instead of putting 5 for month, we use

May.

>>Time.local "2010", "may", "1"
=> Sat May 01 00:00:00 +0530 2010

Some times Ruby language looks as easy as talking English

138

I Love Ruby 2015 Beta

Files
Until now you have stored data in variables in your program. Variable data gets lost when the

program stops executing or when the computer is switched off. If you want a persistent storage you

must store it in files. When you store data in files, it stays there even if the computer is shut down,

and you can get the data back when its turned on. This very book if you are reading it on computer,

kindle or electronic reader is a file thats stored permanently on your computer. In this chapter we

will see how we can create, manipulate and delete files using ruby program.

Storing output into files
Lets create a familiar Ruby program. Type the program below into a text editor

#!/usr/bin/ruby
write_file.rb

puts "Hello World!"
puts "Ruby can write into files"

While executing it, give command as shown

$ ruby write_file.rb > something.txt

Now goto the working directory in which the program was and you will see a file named

something.txt . Open it and this is what you will see in it

Hello World!
Ruby can write into files

Well, this time its somewhat like a cheat. We haven't written into a file in our program, instead we

have instructed the ruby interpreter to take the output that write_file.rb generates and put it in a

file called something.txt. To do so we make use of > (greater than sign).

Taking file as input
In the last example we wrote our output to a file. Now lets take a file as input and lets process it.

Write the code below in text editor and save it as line_count.rb.

#!/usr/bin/ruby
line_count.rb

puts "The file has #{readlines.length} line(s)"

139

https://raw.github.com/mindaslab/ilrx/master/line_count.rb
https://raw.github.com/mindaslab/ilrx/master/write_file.rb

I Love Ruby 2015 Beta

To execute it, we will give command as shown

$ ruby line_count.rb < something.txt

If you have guessed it right, we given something.txt as input to the program. We use the < (less

than)sign to indicate to the program that we are giving a file as input.

The program when executed provides the following result

The file has 2 line(s)

Lets analyze the program so we know what happens. See the code that been highlighted in the

program above. The readlines command takes in the file and reads all the lines and stores it in an

array, each element of the array has a line. All we have to do is to get the length of an array which

we can get by using the length function. So readlines.length gives the length as output which

we embed it into a string hence we finish it off by writing the following statement

puts "The file has #{readlines.length} line(s)"

File copy – a kind of
Well, here is file copy program which might make some pundits argue weather if this program is a

true file copy program or not. Type the program below into a text editor

#!/usr/bin/ruby
file_copy.rb

puts readlines.join

And run it like this

$ ruby file_copy.rb < something.txt > everything.txt

Output

everthing.txt has got everything that something.txt has got. Just open it and see for yourself.

The trick is in the commandline. Here we pass something.txt to the program file_copy.rb ,

now the program takes in something.txt and it reads the lines when it encounters the readlines

command. The lines that are readed from something.txt are stored in the form of an array. All we

now have to do is to join the lines stored in array using join command, so we do it by adding

.join to readlines, hence we get

readlines.join

Now we will print out the result, we do this by using a puts command, hence our program takes the

following incarnation

140

https://raw.github.com/mindaslab/ilrx/master/file_copy.rb

I Love Ruby 2015 Beta

puts readlines.join

While running the program we tell it to take input from something.txt and write the generated

result to everything.txt by giving the following command to Ruby interpreter

$ ruby file_copy.rb < something.txt > everything.txt

So we get the effect of copying without really writing a program for file copy.

Displaying a file
Lets now write a program that displays the content of a file. To do so we read all lines in a file, store

it in an array. Next we take each and every element of an array and print it out. Type the program

below and

#!/usr/bin/ruby
display_file.rb

readlines.each do |line|
puts line

end

Execute it by typing the following

$ ruby display_file.rb < something.txt

This is what you will get as output

Hello World!
Ruby can write into files

So what we have done in this program.? Look at the highlighted code block, when ruby encounters

readlines , it reads from the file passed to the program, extracts the lines and stores it in an array.

With .each operator we extract a single line at a time and store it into a variable called line inside

the do end block. We print out this line in the code block using puts. The end statement put an

end to the code block says all is over.

Lets see another program. In this program we use a more cleaner approach. Type the program into a

text editor and execute it

#!/usr/bin/ruby
display_file_1.rb

puts File.open("something.txt").readlines

Output

Hello World!
Ruby can write into files

Look at the single line in the program. We have a puts statement, that prints almost what ever is

141

https://raw.github.com/mindaslab/ilrx/master/display_file_1.rb
https://raw.github.com/mindaslab/ilrx/master/display_file.rb

I Love Ruby 2015 Beta

thrown at it. Here is the new thing thats been introduced. Look at the highlighted code, we have a

thing called File.open(“something.txt”) , the File.open opens a file, but what file? We must

give the name of the file to it. As a file name we pass something.txt in double quotes51. The

File.open opens it, the .readlines attached to it reads lines and stores it in an array. We throw the

array to puts which prints it out. Thats it!

Reading file line by line
Till the last section we have seen how to read a file in a go and pump its data out to the console. In

this example we will see how to read a file line by line. Type in the example code given below and

execute it

#!/usr/bin/ruby
read_file_1.rb

File.open("something.txt").each { |line| puts line }

Output

Hello World!
Ruby can write into files

The output looks as shown above. Look at the highlighted code In the code we open a file named

something.txt using a File.open command which opens the file and stores the lines as array

elements. All we need to do now is to extract each element in an array and print it out on our

console which is accomplished by the line highlighted above.

Instead of using File.open , one could use File.new to open a file. All will have the same result.

A program using File.new has been written and is shown below, execute it and you will get the

same result.

#!/usr/bin/ruby
read_file_2.rb

File.new("something.txt").each { |line| puts line }

Output

Hello World!
Ruby can write into files

51 A name is a string right?

142

https://raw.github.com/mindaslab/ilrx/master/read_file_2.rb
https://raw.github.com/mindaslab/ilrx/master/read_file.rb

I Love Ruby 2015 Beta

Open and new – the difference
Seen from previous examples one might think that there isn't much difference between File.open

and File.new, infact there is a difference. Consider the program below, type it and execute it

#!/usr/bin/ruby
file_open.rb

File.open("something.txt") do |f|
 puts f.gets
end

Output

Hello World!

The program above prints out the content present in something.txt, the same thing is done by

file_new.rb as shown below

#!/usr/bin/ruby
file_new.rb

f = File.new("something.txt", "r")
 puts f.gets
f.close

Output

Hello World!

OK so whats the difference? File.new returns a new file object or handle that can be store into a

variable. In the above program we store the file object into variable f. We can use this variable any

where in the program to access and manipulate the file. Having done all needed with the file using

the variable f, we finally close the file using f.close.

Lets write a program named file_open_error.rb as shown below

#!/usr/bin/ruby
file_new.rb

File.open("something.txt") do |f|
 puts f.gets
end
puts "Reading file after File.open block is closed:"
puts f.gets # This should throw an error

Output

Hello World!
Reading file after File.open block is closed:
file_open_error.rb:8: undefined local variable or method `f' for main:Object
(NameError)

See the highlighted code, we try to read the file content after we close the code block and it throws

143

https://raw.github.com/mindaslab/ilrx/master/file_new.rb
https://raw.github.com/mindaslab/ilrx/master/file_new.rb
https://raw.github.com/mindaslab/ilrx/master/file_open.rb

I Love Ruby 2015 Beta

an error, this is because File.open loads into file handle into variable f inside the do end code

block, after the block is closed you have no way to access the file.

Though the difference is minor, there is still a difference.

Defining our own line endings
Till now reading line by line means that the Ruby program when given a file name searches for it,

loads it then it scans the file, when it encounters a line ending character '\n' 52 on the Linux system

(its \r\n on windows) it recognizes the line has ended and hence packs the characters before it into

an array element. What if we want to define our own line ending character? In English language full

stop is considered as a line ending character. Why can't we say to the Ruby interpreter to mark end

of the line at a full stop character? To do so lets create a simple text file named line_endings.txt

and put the following text in it

This is first line. This is second line. This
is the third. And fourth comes after third.

 Lets write a Ruby program shown below in text editor, save it as line_endings.rb

#!/usr/bin/ruby
line_endings.rb

File.open("line_endings.txt").each('.') do |line|
puts line

end

When executed the program prints out the following output

This is first line.
 This is second line.
 This
is the third.
 And fourth comes after third.

See carefully line_endings.txt . This is first line : This is first line.

 and This is second line : This is second line.

Both are on the same line in line_endings.txt but it gets printed out as two different lines when

the program is executed. This is because the statement File.open("line_endings.txt") loads

the entire content of the file into the memory, the .each('.') splits the content at every dot or full

stop character ('.'), and puts the each chunk of split text into an array element. So the real hero here

is the each function. In a similar way you can have any character that can define a line ending.

52 The \n character will not be shown to the user and hence you wont be able to see it when you open the file with a
text editor.

144

https://raw.github.com/mindaslab/ilrx/master/line_endings.rb

I Love Ruby 2015 Beta

If you are writing a C compiler using Ruby, you might use the semicolon character (;) as your line

ending.

Reading byte by byte
Sometimes you want to read a file byte53 by byte instead of reading plain English in it. Why on

earth we read a file byte by byte? Well, not all files have text in it. Files such as music files, videos

and so on have raw data which only some programs can understand. If you are writing a music or

video player or image viewer, you need to read the raw data and do something with it. So to read

and display bytes of data we use each_byte function. Take a look at the code below. Type it and

execute it

#!/usr/bin/ruby
byte_by_byte.rb

File.open("something.txt").each_byte { |byte| puts byte }

When executed this is how the output will look like

72
101
108
108
111
32
87
111
.
.
some stuff is removed to save pages printed
.
.
105
108
101
115
10

In the above program we open the file named something.txt using File.open , all the contents

gets loaded, now we access the content byte by byte using the each_byte function, we capture the

bytes in variable called byte and print it out. Notice that in this program we have used curly

brackets { and }, these can be used instead of do and end . I prefer do and end as they look more

friendly.

53 To know what byte is goto http://wikipedia.org/byte

145

https://raw.github.com/mindaslab/ilrx/master/byte_by_bvte.rb
http://wikipedia.org/byte

I Love Ruby 2015 Beta

Reading single character at a time
The program below reads character by character and prints it. We use a function called each_char

which works with Ruby 1.9.x version. Currently I have not installed it, so I am not giving away the

output of this program.

#!/usr/bin/ruby
char_by_char.rb

To get this program to work, you must
have ruby 1.9

File.open("something.txt").each_char { |a| puts a }

Output

H
e
l
l
o

W
o
r
l
d
!

R
u
b
y

c
a
n

w
r
i
t
e

i
n
t
o

f
i
l
e
s

146

https://raw.github.com/mindaslab/ilrx/master/char_by_char.rb

I Love Ruby 2015 Beta

Renaming files
Renaming a file is extremely easy in Ruby, all you have to do is to call the rename function in file

class. The first argument will be the name of the file that needs to be renamed, the second one will

be the new name. Its so simple you can try it out on the irb. Take a look at the source code of

program rename.rb given below. In it we rename a file called noname.txt to somename.txt.

Before you run the program place a file called noname.txt on the working directory.

#!/usr/bin/ruby
rename.rb

File.rename("noname.txt", "somename.txt")

Output

The file noname.txt was renamed to somename.txt

Finding out position in a file
You might sometime need to find out your position within a file. To do so you can use the method

pos. Lets see an example that explains us how to find our position in a file. Type and execute

fie_position.rb

#!/usr/bin/ruby
file_position.rb

f = File.open "god.txt"
puts "At the beginning f.pos = #{f.pos}"
f.gets
puts "After reading first line f.pos = #{f.pos}"
f.gets
puts "After reading second line f.pos = #{f.pos}"

Output

At the beginning f.pos = 0
After reading first line f.pos = 43
After reading second line f.pos = 69

Lets now walkthru the code and see how it works. First we open a file named god.txt in the line f

= File.open "god.txt" next we check out whats the position using the statement puts "At the

beginning f.pos = #{f.pos}" , note the f.pos, the pos method is used to get the position that

we are in while we read or write a file. Initially when we open a file the position will be at zero and

so we get the following output

147

https://raw.github.com/mindaslab/ilrx/master/god.txt
https://raw.github.com/mindaslab/ilrx/master/file_position.rb
https://raw.github.com/mindaslab/ilrx/master/rename.rb

I Love Ruby 2015 Beta

At the beginning f.pos = 0

In the next line we read the first line of file using f.gets , since we have read the file like the reading

pointers position should have changed54 , so when we print f.pos it must display some other

number than zero. So the statement puts "After reading first line f.pos = #{f.pos}"

produces the following result

After reading first line f.pos = 43

Just for the sake of educating more we read the second line using another f.gets now we print the

new file position, now we find that the pointer points to position 69.

If you are wondering what god.txt has, here is it:

All things exists because it was created.
Then the creator exists.
Did man ever think how the creator exist?
If such a mighty creator can exist without creation,
then why can't this simple universe exist without
a creator?

In the coming example we will see how to change our position within a file. Type the example

below (file_changing_position.rb) and execute it

#!/usr/bin/ruby
file_changing_position.rb

f = File.open "god.txt"
puts "Reading file with f.pos = 0"
puts f.gets
puts "_"*40
f.pos = 12
puts "Reading file with f.pos = #{f.pos}"
puts f.gets
puts "Now f.pos = #{f.pos}"

Output

Reading file with f.pos = 0
All things exists because it was created.
__
Reading file with f.pos = 12
xists because it was created.
Now f.pos = 43

Read the program carefully and notice the output. First we open the file god.txt and the variable f

has its handle. Next in line

puts f.gets

We are reading with file with f.pos at zero, that is we are reading from the start of file. As you can

see the output for the first puts f.gets we get the entire line All things exists because it

54 In this case, should be at the end of file

148

https://raw.github.com/mindaslab/ilrx/master/file_changing_position.rb

I Love Ruby 2015 Beta

was created. gets printed. Notice the next line carefully, we now change our position within file

to position 12 using the statement f.pos = 12, this means that our pointer is 12 bytes from the

start. Now in the second puts f.gets , we get the output as xists because it was created.

This shows us that we are able to change our position within a file in a successful way.

Some minds could think that there could be a possibility of negative file position where say if you

want to read the last 20 bytes of file you can assign f.pos = ­20 and when giving f.gets it would

get printed. Well, thats not possible with Ruby. If you want try out the example

(file_negative_position.rb) and see weather it gives a proper result.

#!/usr/bin/ruby
file_negative_position.rb

this example wont work

f = File.open "god.txt"
f.pos = ­20
puts "Reading file with f.pos = #{f.pos}"
puts f.gets

Writing into files
Till now we have seen how to read from files, we will now see how to write content into files. To

learn how to write into files type the below example (write_file_1.rb) into the text editor and

execute it

#!/usr/bin/ruby
write_file_1.rb

File.open "god.txt", "w" do |f|
some_txt = <<END_OF_TXT

All things exists because it was created.
Then the creator exists.
Did man ever think how the creator exist?
If such a mighty creator can exist without creation,
then why can't this simple universe exist without
a creator?
END_OF_TXT

f.puts some_txt
end

After execution open the file god.txt and this is what you will see in it

All things exists because it was created.
Then the creator exists.
Did man ever think how the creator exist?

149

https://raw.github.com/mindaslab/ilrx/master/write_file_1.rb
https://raw.github.com/mindaslab/ilrx/master/file_negative_position.rb

I Love Ruby 2015 Beta

If such a mighty creator can exist without creation,
then why can't this simple universe exist without
a creator?

Lets walk thru the program and see how it works. First in the statement File.open "god.txt",

"w" , we open a file named god.txt for writing. We indicate that we are opening the file for

writing by passing “w” as second argument. This second argument is called as a flag. Given below

are list of flags that can be used for file operations.

Flag What it says

r The file is opened in read only mode. The file pointer is placed at the start of file.

r+ In r+ mode both reading and writing is allowed. The file pointer is placed at the start of
the file

w This means write only. If the file does not exist, a new file is created and data is written
into it. If the file exists the previous content is replaced by new content

w+ In this mode both reading and writing is allowed. If the file does not exist, a new file is
created. If it exists the old content is lost and new one s written.

a This flag opens the file in append mode. Append mode is a special form of write mode in
which the new content added is placed the end of old content55, by this way previous
information isn't lost.

a+ Both reading and writing is allowed (i.e append mode plus reading and writing). Any
newly added data is placed at the end of the file.

b Binary file mode. In this mode files that have data other than text is read. For example
opening a music or video file.

Having opened a file in write mode we now have opened a do end block within which we capture

the file handle in variable f. All we need to do is to write a string to the file.

We create a string using the following code

some_txt = <<END_OF_TXT
All things exists because it was created.
Then the creator exists.
Did man ever think how the creator exist?
If such a mighty creator can exist without creation,
then why can't this simple universe exist without
a creator?
END_OF_TXT

Now some_txt has got a string which we need to write it into the file. To write it into the file we

use the following statement

f.puts some_txt

gets gets the file content, puts writes something into the file, so as an argument to the puts

function we pass some_txt , the content held in it gets written into the file. The program reaches the

55 The file pointer is placed at the end of the file

150

I Love Ruby 2015 Beta

end, the file is closed and that's it. When you open god.txt you can see what's written in it.

Appending content into files
Till now we have seen how to read from files and write content in it. Now lets see how to append

content in it. While appending content into files, the old content stays on the new content is added at

the bottom of the page.

To understand how this works type the program file_append.rb and execute it.

#!/usr/bin/ruby
file_append.rb

puts "Enter text to append into file: "
text = gets
f = File.new("log_file.txt", "a")
f.puts "\n"+Time.now.to_s+"\n"+text

When the program prompts you to enter some thing, type some thing like It will be great if

dinosaurs were still around and press enter. Run this program a few times, type something,

after you got bored from few run's open log_file.txt and see what it contains. When I opened

mine, this is what I got:

Sat Mar 27 16:20:24 +0530 2010
This is my first log

Sat Mar 27 16:21:10 +0530 2010
This is my second log

Sat Mar 27 16:21:36 +0530 2010
This is my third log. Now I'm getting bored.

See how neatly your entries have been recorded along with time stamp. To understand how the

program lets walk thru it.

The first line puts "Enter text to append into file: " , prints out Enter text to append

into file: and the control goes on to the next line text = gets at which stage the program waits

for you to enter something and press enter. When you do press enter, what you entered gets stored in

variable text.

The next line f = File.new("log_file.txt", "a")is the crucial one and highlight of our

program. In this line we open a file called log_file.txt in append mode. Notice that we pass “a”

as the second argument to File.new which tells that we are opening it in append mode. In this

151

https://raw.github.com/mindaslab/ilrx/master/file_append.rb

I Love Ruby 2015 Beta

mode the content that was previously stored in the file is not erased and/or over written, instead

whats new being added is written at the end of the page. (If you are reading PDF version) You can a

list of file flags by clicking here.

Once having opened in append mode, all we need to do is to put content stored in variable text into

the file. Since the file handle is stored in variable f, we could have completed the program by

writing f.puts text , but I wished it would be better if we logged our data with time stamps, and I

have left line breaks before and after each log so that it will be nice to read, so I have written the

code f.puts "\n"+Time.now.to_s+"\n"+text .

Thats it, the content we have written at the program prompt and along with the time stamp gets

stored into the file. At the end of the program it would have been nice if we had closed the file using

f.close , I haven't done it in this program, but it works.

Storing objects into files
Till now we have seen to read, write and append into files, whats we stored and read were pieces of

text. Now we will see how to store objects or instance of classes into files.

Pstore

Pstore is a binary file format into which you can store almost anything. In the coming example we

are going to store few objects that belongs to the square class. First we will be writing a class for

square and put it into a file called square_class.rb . If you feel lazy copy the content and below

and put it into the file, if you are a active guy/gal type it all by yourself, finally you will end up with

the same thing.

square_class.rb

class Square
attr_accessor :side_length

def initialize side_length = 0
@side_length = side_length

end

def area
@side_length * @side_length

end

def perimeter
4 * @side_length

152

https://raw.github.com/mindaslab/ilrx/master/square_class.rb

I Love Ruby 2015 Beta

end
end

Once the square class is ready, we will use it in two different places. The first one is coming right

now. We create a program called pstore_write.rb , type the content given below in it

#!/usr/bin/ruby
pstore_write.rb

require 'square_class.rb'

s1 = Square.new
s1.side_length = 4
s2 = Square.new
s2.side_length = 7

require 'pstore'
store = PStore.new('my_squares')
store.transaction do

store[:square] ||= Array.new
store[:square] << s1
store[:square] << s2

end

We will walk thru the program now. The first line require 'square_class.rb' includes the code

of the square class into the program, by doing so we can write code as though the square class code

is typed into the same file, this reduces lot of typing and makes the code look neat.

In the next four lines shown below, we declare two squares s1 and s2, we assign s1's side length

to be 4 units and that of s2 to be 7. In the next line we include the code needed to read and write the

pstore file format. We don't need to write that code as its already written for us, all we need to do is

to type require 'pstore' and that will include the code.

Next we create pstore file using the command store = Pstore.new('my_squares') . This

creates a pstore file called my_squares and passes on the file handle to the variable named store,

with this variable store we can read, manipulate the file my_squares. To start writing into the file

we need to start a transaction which is accomplished by the following block of code

store.transaction do

end

Now we can do transactions with the pstore file within the do and end block. Within the block we

add the code thats highlighted below

store.transaction do
store[:square] ||= Array.new
store[:square] << s1
store[:square] << s2

153

https://raw.github.com/mindaslab/ilrx/master/pstore_write.rb

I Love Ruby 2015 Beta

end

The first line creates a array named store[:square], the ||= means that if already a variable

named store[:square] exists then there is no need to create that variable as its already there. If

such a variable doesn't exist, the we need to create it. After creating an array we we add square

objects / instance variables s1 and s2 into them using the following lines

store[:square] << s1
store[:square] << s2

Once done we close the transaction using the end command. Just view your working directory, you

will be able to see a file named my_squares in it as shown in image below:

So now we have successfully written into the pstore file named my_square . All we need to do is

read it and confirm what we have done is right. To read the data written into it we will write a

program pstore_read.rb .

Create a file named pstore_read.rb and store the program written below in it, execute and watch

the output.

#!/usr/bin/ruby
pstore_read.rb

require 'square_class.rb'
require 'pstore'

store = PStore.new('my_squares')
squares = []
store.transaction do

154

https://raw.github.com/mindaslab/ilrx/master/sqquare_class.rb
https://raw.github.com/mindaslab/ilrx/master/pstore_read.rb

I Love Ruby 2015 Beta

 squares = store[:square]
end

squares.each do |square|
puts "Area = #{square.area}"
puts "Perimeter = #{square.perimeter}"
puts "==============================="

end

Output

Area = 16
Perimeter = 16
===============================
Area = 49
Perimeter = 28
===============================

As you see the area and perimeter of the two squares are printed. If you feel I am tricking you

check for our self with a calculator. Well to understand what happens in pstore_write.rb lets

walkthru the code. In the first two lines

require 'square_class.rb'
require 'pstore'

we include the code in square_class.rb and code for reading and writing pstore files into our

program. Just like the previous example we open the pstore file my_squares and store the file

handle into the variable named store in the following line

store = PStore.new('my_squares')

Now we create a array named squares in the following line

squares = []

With the store variable (which is the my_squares handle) we open a transaction as shown

store.transaction do
 squares = store[:square]
end

In the transaction as shown in the highlighted code above we transfer the objects in variable

store[:squares] to the declared variable squares, so by this time the variable square must contain

the content of two square objects which we defines in previous example pstore_write.rb

Once we have taken out the values we can close the transaction using the end key word.

In the following code

squares.each do |square|
puts "Area = #{square.area}"
puts "Perimeter = #{square.perimeter}"
puts "==============================="

end

155

I Love Ruby 2015 Beta

we take each each object in array squares and load it into variable called square and we print out

the perimeter and area.

YAML

YAML stands for YAML ain't XML. YAML is a markup language in which we can store something

like data contained in Ruby objects. Lets write a program in which we store the data of the square

objects into YAML and retrieve it. Note that in this program we are not saving the output YAML

data into a file, why so? Simply because I am lazy enough. Type the code yaml_write.rb into text

editor and execute it

#!/usr/bin/ruby
yaml_write.rb

require 'yaml'
require 'square_class'

s = Square.new 17
s1 = Square.new 34
squares = [s, s1]
puts YAML::dump squares

When executed, the program will produce the following output

­­­
­ !ruby/object:Square
 side_length: 17
­ !ruby/object:Square
 side_length: 34

Lets now walkthru the program. The first two lines

require 'yaml'
require 'square_class'

Imports the code needed to read and write into YAML files. The next one loads the code in the

square_calss.rb so that you can program with square objects.

In the following lines

s = Square.new 17
s1 = Square.new 34

We declare two Square objects. One has edge or side length of 17 units and other has side length of

34 units. In the next line

squares = [s, s1]

We pack the objects s and s1 into an array called squares. In the following line

puts YAML::dump squares

156

https://raw.github.com/mindaslab/ilrx/master/yaml_write.rb

I Love Ruby 2015 Beta

we dump the formed array into YAML and print it onto the screen using puts statement.

Copy the stuff that comes in as output. It will be used to write the next program yaml_read.rb ,

type the code yaml_read.rb thats shown below into the text editor and execute it

yaml_read.rb

require 'yaml'
require 'square_class'

yaml = <<END
­­­
­ !ruby/object:Square
 side_length: 17
­ !ruby/object:Square
 side_length: 34
END

squares = YAML::load(yaml)
squares.each do |square|
puts "Area = #{square.area}"
puts "Perimeter = #{square.perimeter}"
puts "==============================="
end

Look at the output

Area = 289
Perimeter = 68
===============================
Area = 1156
Perimeter = 136
===============================

The first set of area and perimeter thats been displayed is of Square s and second set is of Square

s1. Lets walkthru the code understand what is happening. As usual these lines:

require 'yaml'
require 'square_class'

imports the code needed for YAML and second one imports code in square_class.rb which

enables us to deal with Square objects. Next we have a multi line string yaml

yaml = <<END
­­­
­ !ruby/object:Square
 side_length: 17
­ !ruby/object:Square
 side_length: 34
END

The content of yaml is enclosed between <<END and END , note that the content of yaml is the output

of the previous program. Concentrate on this line

squares = YAML::load(yaml)

157

https://raw.github.com/mindaslab/ilrx/master/yaml_read.rb

I Love Ruby 2015 Beta

Its here all magic happens. Here the Ruby magically finds out from the YAML that we are loading

data stored in an array, this array consists of two objects of class Square and first one has side

length 17 units and another of 34 units. So the YAML::load phrases it into array of Square's and

stores it into variable squares.

In the following code:

squares.each do |square|
puts "Area = #{square.area}"
puts "Perimeter = #{square.perimeter}"
puts "==============================="
end

We load each element of array into a variable square and print its area and perimeter. If I have got

mood enough I will be putting examples of storing YAML into files and reading it back, but for now

forgive my laziness.

158

I Love Ruby 2015 Beta

Proc, Lambdas and Blocks
If you have know some programming languages, you might have heard about closures. Proc and

Blocks are similar kind of thing. You can take a piece of code, stick it in between a do end, assign it

to a variable. This variable contains the piece of code and can be manipulated like objects, passed

around and blah blah.

Proc is like a function, but its an object. Lets see an example to know what an Proc is. Type in the

program proc.rb into the text editor and execute it.

#!/usr/bin/ruby
proc.rb

say_hello = Proc.new do
puts "Hello world!"

end

say_hello.call
say_hello.call

This is how the output will look like

Hello world!
Hello world!

Lets now walkthru the code to understand it. Take a look at the following lines

say_hello = Proc.new do
puts "Hello world!"

end

In this case you are taking a single Ruby statement puts “Hello World!” and putting it between

an do and end. You are making this code a Proc by appending Proc.new before the do (the start of

the block). You are assigning the Proc object to a variable named say_hello. Now say_hello can

be thought as something that contains a piece of program.

Now how to call or execute the code? When we need to call the piece of Proc named say_hello we

write the following command

say_hello.call

In the proc.rb we call say_hello twice and hence we get two Hello World! as output.

159

https://raw.github.com/mindaslab/ilrx/master/proc.rb

I Love Ruby 2015 Beta

Passing parameters
Like functions you can pass parameters to a Proc. To see how it works, type the program

proc_hello_you.rb and execute it.

#!/usr/bin/ruby
proc_hello_you.rb

hello_you = Proc.new do |name|
puts "Hello #{name}"

end

hello_you.call "Peter"
hello_you.call "Quater"

When executed the program gives the following output.

Hello Peter
Hello Quater

Take a look at the bold / highlighted / darkened code in above program. Notice that we are

capturing some thing after the do keyword, by giving do |name| we are putting something thats

been passed to the Proc block into the variable name. This variable can now be used anywhere in the

Proc block to do something.

In puts "Hello #{name}" , we print hello followed by the passed parameter (name). So we have

written a Proc that can accept some thing passed to it. How do we call and pass something to it?

Well, notice the statements after the end, look at the first one, it says

hello_you.call "Peter"

hello_you.call calls the Proc code to be executed. To the Proc we pass the string “Peter”, this

string gets copied in to the variable name in the Proc and hence we get the output Hello Peter.

In a similar way when Ruby interpreter comes across hello_you.call "Quarter" , it prints

Hello Quater.

Passing Proc to methods
Just like any object, we can pass Proc to methods. Take a look at the code below (

proc_to_method.rb). Study it, code it and execute it

#!/usr/bin/ruby
proc_to_method.rb

An exampleof passing a proc to method

160

https://raw.github.com/mindaslab/ilrx/master/proc_to_method.rb
https://raw.github.com/mindaslab/ilrx/master/proc_hello_you.rb

I Love Ruby 2015 Beta

def execute_proc some_proc
some_proc.call

end

say_hello = Proc.new do
puts "Hello world!"

end

execute_proc say_hello

This is how the output will look like.

Hello world!

Lets now analyze the code of execute_proc function, its code is as follows

def execute_proc some_proc
some_proc.call

end

We take in one argument called some_proc which we assume it as Proc. We then execute it by using

its own call method, i.e. in function we just call some_proc.call for the passed Proc to be

executed. If you look at next few lines we create a Proc called say_hello

say_hello = Proc.new do
puts "Hello world!"

end

All we do in say_hello Proc is to print Hello world! And thats it. Now we call the method

execute_proc and pass say_hello in the following piece of code

execute_proc say_hello

Having passed the Proc, it gets copied to some_proc argument and when some_proc is executed, it

prints Hello world! faithfully.

Returning Proc from function
I had written earlier that Proc can be treated just like objects. In fact Proc is an object. We can pass

it to functions, which we have seen in the previous subsection, now we can see an example in which

Proc is returned from a function. Take a good look at code given below (proc_returning_it.rb).

#!/usr/bin/ruby
proc_returning_it.rb

Function that returns a proc
def return_proc

Proc.new do |name|
puts "The length of your name is #{name.length}"

end
end

161

https://raw.github.com/mindaslab/ilrx/master/proc_returning_it.rb

I Love Ruby 2015 Beta

name_length = return_proc
name_length.call "A.K.Karthikeyan"

When executed, the program throws the following output

The length of your name is 15

Look at the function return_proc . In it we create a new Proc which accepts a parameter called

name. Assuming that name is a string, we simply print the length of it. Now consider the code that

comes after this function which is as follows:

name_length = return_proc
name_length.call "A.K.Karthikeyan"

In the first line name_length = return_proc , the name_length gets assigned with what ever the

return_proc method returns. In this case since Proc.new is the last statement / block in the

return_proc method, it returns a new Proc which gets assigned to name_proc. So now name_proc

can accept a parameter. All we do now is to call name_proc followed by a name

name_length.call "A.K.Karthikeyan"

Hence name_length accepts my name as parameter, calculates its length and prints it. Hence this

example shows that its possible to return a Proc from a function.

Proc and Arrays
Lets now see how Proc can be used with Arrays to filter them. Take a look at the program

proc_and_array.rb below. In it we have declared a Proc called get_proc which takes one argument

num. In the Proc we return num if its even which is ensured by the following statement num unless

num%2 == 0 as highlighted below. Run the program and note the output.

proc_and_array.rb

get_odd = Proc.new do |num|
num unless num%2 == 0

end

numbers = [1,2,3,4,5,6,7,8]

p numbers.collect(&get_odd)
p numbers.select(&get_odd)
p numbers.map(&get_odd)

Output

[1, nil, 3, nil, 5, nil, 7, nil]
[1, 3, 5, 7]
[1, nil, 3, nil, 5, nil, 7, nil]

Now lets consider the following three statements

162

https://raw.github.com/mindaslab/ilrx/master/proc_and_array.rb

I Love Ruby 2015 Beta

p numbers.collect(&get_odd)
p numbers.select(&get_odd)

p numbers.map(&get_odd)

In it, lets just consider the first line p numbers.collect(&get_odd) , so we are having a array of

numbers stored in available called numbers , we call collect on numbers to it we pass the argument

&get_odd that id &<name_of_proc> , this will call the Proc for each and every element in the array,

what ever thats returned by Proc will be collected into a new array. The p ensures that the values get

printed out for us to verify.

If you observe closely both p numbers.collect(&get_odd) and p numbers.map(&get_odd) returns

arrays with nil values in them whereas select filters out the nil's and returns what that remains

Lambda
Lambdas are just like Procs. There is almost no difference expect two. I will explain one of them

here and the other one you must find out yourself56.

Okay lets see a small program now

lambda.rb

print_hello = lambda do
puts "Hello World!"

end

print_hello.call

Output

Hello World!

To know how this program works, read Proc, Lambdas and Blocks .

Passing Argument to Lambda
Well, execute the program below.

lambda_passing_argment.rb

odd_or_even = lambda do |num|
if num % 2 == 0

puts "#{num} is even"
else

puts "#{num} is odd"
end

56 Out of which I sure don't know what the other one is

163

https://raw.github.com/mindaslab/ilrx/master/lambda_passing_argument.rb
https://raw.github.com/mindaslab/ilrx/master/lambda.rb

I Love Ruby 2015 Beta

end

odd_or_even.call 7
odd_or_even.call 8

Output

7 is odd
8 is even

To know how it works checkout Passing parameters section in this chapter.

Proc and Lambdas with Functions
Okay, so whats the difference between Proc and Lambda. I read somewhere that there are two main

differences between them, here is the first one. In the example below

calling_proc_and_lambda_in_function.rb we have two functions namely calling_lambda and

calling_proc , type and run this file on your machine

calling_proc_and_lambda_in_function.rb

def calling_lambda
puts "Started calling_lambda"
some_lambda = lambda{ return "In Lambda" }
puts some_lambda.call
puts "Finished calling_lambda function"

end

def calling_proc
puts "Started calling_proc"
some_proc = Proc.new { return "In Proc" }
puts some_proc.call
puts "In calling_proc function"

end

calling_lambda
calling_proc

Output

Started calling_lambda
In Lambda
Finished calling_lambda function
Started calling_proc

You will see an output as shown above. So lets walkthru its execution. When calling_lambda

164

https://raw.github.com/mindaslab/ilrx/master/calling_proc_and_lambda_in_function.rb

I Love Ruby 2015 Beta

function is called first the program prints Started calling_lambda by executing puts "Started

calling_lambda" . Next we define a new lambda some_lambda and call it using these lines of

code

some_lambda = lambda{ return "In Lambda" }
puts some_lambda.call

So when some_lambda is called, it returns “In Lambda” which gets printed in line puts

some_lambda.call

And then the final statement in the function puts "Finished calling_lambda function" is

executed giving us the following output

Started calling_lambda
In Lambda
Finished calling_lambda function

when the function finishes.

Next we call the function calling_proc , we expect it to behave like call_lambda, but it does not!

So hat happens. All we know from the output is the puts "Started calling_proc" gets executed, after

that?

Well see the next line some_proc = Proc.new { return "In Proc" } , notice that it has got a

return statement. When a proc is called in a function, and it has a return statement, it terminates that

function and returns the value of the return as though the function itself is returning it! Whereas

lambda does not do it. Even if a lambda called in a function and the called lambda has a return

statement, it passes the control to next line in the function after it gets called, in a proc call its not

so, it simply exits out of the function returning its own value out (as tough the function had returned

it).

The second difference
In the previous section, I have written about one difference between Proc and Lambda, lets see the

second difference here. Look at the code below

>> lambda = ­> (x) { x.to_s }
=> #<Proc:0x00000001f65b70@(irb):1 (lambda)>
>> lambda.call
ArgumentError: wrong number of arguments (0 for 1)

from (irb):1:in `block in irb_binding'
from (irb):2:in `call'
from (irb):2
from /home//karthikeyan.ak/.rvm/rubies/ruby­2.1.3/bin/irb:11:in `<main>'

165

I Love Ruby 2015 Beta

I have used irb to demonstrate the example. In the code above we have defined a Lambda in the

following statement lambda = ­> (x) { x.to_s } , now we then call it using the following

statement lambda.call , as you can see since we have a argument x, and we are not passing

anything to it the lambda throws an exception or complains about it. Now lets try it for a Proc

>> proc = Proc.new { |x| x.to_s}
=> #<Proc:0x00000001a17470@(irb):3>
>> proc.call
=> ""

So as you can see above if a argument should be passed to a Proc, and if its not passed, the Proc is

called without giving a argument, the Proc does not complain, but treats it as nil.57

Lambda and Arrays
Execute the program below

lambda_and_array.rb

get_odd = lambda do |num|
num unless num%2 == 0

end

numbers = [1,2,3,4,5,6,7,8]

p numbers.collect(&get_odd)
p numbers.select(&get_odd)
p numbers.map(&get_odd)

Output

[1, nil, 3, nil, 5, nil, 7, nil]
[1, 3, 5, 7]
[1, nil, 3, nil, 5, nil, 7, nil]

To know how it works read Proc and Arrays section in this chapter.

Blocks and Functions
We have seen Procs and how to pass them to methods and functions. Lets now see about Blocks and

how to pass them to functions. Type the example blocks_in_methods.rb and execute it

blocks_in_methods.rb

def some_method *args, &block
 p args

57 Thanks to weakish for pointing it out https://github.com/mindaslab/ilrx/issues/4

166

https://raw.github.com/mindaslab/ilrx/master/blocks_in_methods.rb
https://raw.github.com/mindaslab/ilrx/master/lambda_and_array.rb
https://github.com/mindaslab/ilrx/issues/4

I Love Ruby 2015 Beta

 block.call
end

some_method 1, 3, 5, 7 do
 puts "boom thata"
end

Output

[1, 3, 5, 7]
boom thata

So lets now see the code. In the code we have defined a method named some_method in the

following line def some_method *args, &block . Notice that we are taking in all arguments in

*args and we have something new called &block that will take in the block of code. You can

replace &block with some other variable like &a or &something , or what ever you prefer.

Right now forget about whats there in the function body. Now lets see the calling of the function,

which is shown below

some_method 1, 3, 5, 7 do
 puts "boom thata"

end

So we call some_method and pass on arguments 1, 3, 5, 7. This will be collected in *args58 variable

as an array. Now see the part that has been bold, its starts with do and ends with end and in between

you can have as many statements as you want, in other words its a block of code. We just have a

statement puts "boom thata" , and thats is. This block of code will go into the &block variable.

Now note the following highlighted statement in some_method

def some_method *args, &block
 p args
 block.call

end

We call the block using just block.call and not &block.call , this is important. When we use

call method on a block the block gets executed and we get the output “boom thata” printed out.

Now lets see another example where we can pass a variable to a blocks call. Type in the example

below and execute it.

blocks_in_methods_1.rb

def some_method *args, &block
 p args

58 See Variable number of arguments

167

https://raw.github.com/mindaslab/ilrx/master/blocks_in_methods_1.rb

I Love Ruby 2015 Beta

 block.call 7
end

some_method 1, 3, 5, 7 do |number|
 puts "boom thata\n" * number
end

Output

[1, 3, 5, 7]
boom thata
boom thata
boom thata
boom thata
boom thata
boom thata
boom thata

Note that in the some_method definition, we have called the Block by using block.call 7 , where

does the number 7 go? Well, see the following lines

some_method 1, 3, 5, 7 do |number|
 puts "boom thata\n" * number
end

After the do we capture the variable using |number| , so 7 actually gets stored in number. Inside the

block we multiply "boom thata\n" by number and print it out.

168

I Love Ruby 2015 Beta

Multi Threading
Usually a program is read line by line and is executed step by step by the computer. At any given

point of time the computer executes only one instruction59. When technology became advanced it

became possible to execute many instructions at once, this process of doing many things at the same

time is called multi processing or parallel processing.

Imagine that you are tasked with eating 5 pizzas. It would take a long time for you to do it. If you

could bring your friends too, then you people can share the load. If you can form a group of 20

people, eating 5 pizzas becomes as easy as having a simple snack. The time required to complete

the assigned task gets reduced drastically.

In your Ruby programing you can make the interpreter execute code in a parallel fashion. The

process of executing code parallel is called multi threading. To show how multithreading works

type the program below in text editor and execute it.

#!/usr/bin/ruby
multithreading.rb

a = Thread.new{
i = 1;
while i<=10

sleep(1)
puts i
i += 1

end
}
puts "This code comes after thread"
a.join

Here is the programs output

This code comes after thread
1
2
3
4
5
6
7
8
9

59 Many computers now have more than one processing unit (aka core) and hence true miltithreading is possible now.
Since you are a Ruby programmer there is no need for you to worry about it.

169

https://raw.github.com/mindaslab/ilrx/master/multithreading.rb

I Love Ruby 2015 Beta

10

Unlike other programs this program will take 10 seconds to execute. Take a look at the program and

output. The puts "This code comes after thread" comes after

a = Thread.new{
i = 1;
while i<=10

sleep(1)
puts i
i += 1

end
}

Yet it gets printed first. In the statements shown above we create a new thread named a in which we

use a while loop to print from 1 to 10. Notice that we call a function called sleep(1) which makes

the process sleep or remain idle for one second. A thread was created, while the thread is running,

the Ruby interpreter checks the main thread and its comes across puts "This code comes after

thread" and hence it prints out the string and in parallel as it executes the new thread a created by

us, so 1 to 10 gets printed as we have inserted sleep(1) each loop takes about 1 second to execute.

So after 10 seconds the thread a is finished.

The a.join tells the Ruby interpreter to wait till the thread finishes execution. Once the execution

of thread a is over the statements after a.join (if any) gets executed. Since there is no statement

after it the program terminates.

Here is another program that I took out from a website60 that clearly explains about multithreading.

Gothru the program carefully, try to understand how it works, I will explain it in a moment

#!/usr/bin/ruby
multithreading_1.rb
def func1
 i=0
 while i<=2
 puts "func1 at: #{Time.now}"
 sleep(2)
 i=i+1
 end
end

def func2
 j=0

60 If you think I have infringed a copyright, please inform me at 77minds@gmail.com

170

https://raw.github.com/mindaslab/ilrx/master/multithreading_1.rb
mailto:77minds@gmail.com

I Love Ruby 2015 Beta

 while j<=2
 puts "func2 at: #{Time.now}"
 sleep(1)
 j=j+1
 end
end

puts "Started At #{Time.now}"
t1=Thread.new{func1()}
t2=Thread.new{func2()}
t1.join
t2.join
puts "End at #{Time.now}"

Look at the highlighted code, we have created two threads t1 and t2. Inside thread t1 we call the

method func1() and in thread t2 we call the method func2(), by doing so we are executing both

func1() and func2() in parallel. When executed this is how the output will look like61

Started At Sun Apr 25 09:37:51 +0530 2010
func1 at: Sun Apr 25 09:37:51 +0530 2010
func2 at: Sun Apr 25 09:37:51 +0530 2010
func2 at: Sun Apr 25 09:37:52 +0530 2010
func1 at: Sun Apr 25 09:37:53 +0530 2010
func2 at: Sun Apr 25 09:37:53 +0530 2010
func1 at: Sun Apr 25 09:37:55 +0530 2010
End at Sun Apr 25 09:37:57 +0530 2010

As you can see from the output, the outputs printed by func1 and func2 are interlaced which

proves that they have been executed in parallel. Note that in func1 we have made the thread sleep

for 2 seconds by giving sleep(2) and in func2 we have made the thread sleep for 1 second by

giving sleep(1).

I have made small changes in multithreading_1.rb to produce multithreading_2.rb which

gives almost the same result of multithreading_1.rb, so here is its code:

#!/usr/bin/ruby
multithreading_2.rb

def func name, delay
 i=0
 while i<=2
 puts "#{name} #{Time.now}"
 sleep delay
 i=i+1
 end
end

puts "Started At #{Time.now}"
t1=Thread.new{func "Thread 1:", 2}
t2=Thread.new{func "Thread 2:", 3}

61 You may get a different output as you may be executing the program at a different time

171

https://raw.github.com/mindaslab/ilrx/master/multithreading_2.rb

I Love Ruby 2015 Beta

t1.join
t2.join
puts "End at #{Time.now}"

Instead of using two functions func1 and func2, I have written a single function called func which

accepts a name and time delay as input. A loop in it prints out the name passed and the time instant

at which the statement gets executed. Notice the highlighted statements, we create two threads t1

and t2. In thread t1 I call the function func and pass along the name Thread 1: and tell it to sleep

for 2 seconds. In thread t2 I call the same func and pass name as Thread 2: and tell it to sleep for

3 seconds in each loop iteration. And when executed the program produces the following output

Started At Sun Apr 25 09:44:36 +0530 2010
Thread 1: Sun Apr 25 09:44:36 +0530 2010
Thread 2: Sun Apr 25 09:44:36 +0530 2010
Thread 1: Sun Apr 25 09:44:38 +0530 2010
Thread 2: Sun Apr 25 09:44:39 +0530 2010
Thread 1: Sun Apr 25 09:44:40 +0530 2010
Thread 2: Sun Apr 25 09:44:42 +0530 2010
End at Sun Apr 25 09:44:45 +0530 2010

Which very similar to output produced by multithreading_1.rb.

Scope of thread variables
A thread can access variables that are in the main process take the following program

(thread_variables.rb) as example

#!/usr/bin/ruby
thread_variables.rb

variable = 0
puts "Before thread variable = #{variable}"
a = Thread.new{

variable = 5
}
a.join
puts "After thread variable = #{variable}"

Output

Before thread variable = 0
After thread variable = 5

Type the program and run it. It will produce the result shown above. As you can see from the

program we initialize a variable named variable to 0 before we create the thread. Inside the thread

we change the value of the variable to 5. After the thread block we print variables value which is

now 5. This program shows us that you can access and manipulate a variable thats been declared in

172

https://raw.github.com/mindaslab/ilrx/master/thread_variables.rb

I Love Ruby 2015 Beta

the main thread.

Lets now see if a variable created inside a thread can be accessed outside the scope of it? Type in

the following program (thread_variables_1.rb) and execute it

#!/usr/bin/ruby
thread_variables_1.rb

variable = 0
puts "Before thread variable = #{variable}"
a = Thread.new{

variable = 5
thread_variable = 72
puts "Inside thread thread_variable = #{thread_variable}"

}
a.join
puts "=================\nAfter thread\nvariable = #{variable}"
puts "thread_variable = #{thread_variable}"

Output

Before thread variable = 0
Inside thread thread_variable = 72
=================
After thread
variable = 5
thread_variables_1.rb:13: undefined local variable or method `thread_variable'
for main:Object (NameError)

In the program above we see that we have created a variable named thread_variable in the thread

a, now we try to access it in the following line:

puts "thread_variable = #{thread_variable}"

As you can see the output that the program / Ruby interpreter spits an error as shown:

thread_variables_1.rb:13: undefined local variable or method `thread_variable'
for main:Object (NameError)

It says there is an undefined local variable or method named thread_variable. This means that the

statement in main thread is unable to access variable declared in the thread a. So from the previous

two examples its clear that a thread can access a variable declared in the main thread whereas a

variable declared in the thread's scope cannot be accessed by statement in main scope.

Thread Exclusion
Lets say that there are two threads that share a same resource, let the resource be a variable. Lets

say that the first thread modifies the variable, while its modifying the second thread tries to access

the variable, what will happen? The answer is simple and straight forward, though the program

173

https://raw.github.com/mindaslab/ilrx/master/thread_variables_1.rb

I Love Ruby 2015 Beta

appears to run without errors you may not get the desired result. This concept is difficult to grasp,

let me try to explain it with an example. Type and execute thread_exclusion.rb

#!/usr/bin/ruby
thread_exclusion.rb

x = y = 0
diff = 0
Thread.new {

loop do
x+=1
y+=1

end
}
Thread.new {

loop do
diff += (x­y).abs

end
}
sleep(1) # Here main thread is put to sleep
puts "difference = #{diff}"

Output

difference = 127524

Read the program carefully. Before we start any thread, we have three variables x, y and diff that

are assigned to value 0. Then in the first thread we start a loop in which we increment the value of x

and y. In another thread we find the difference between x and y and save it in a variable called

diff. In the first thread x and y are incremented simultaneously, hence the statement diff += (x­

y).abs should add nothing to variable diff as x and y are always equal and their difference should

always be zero, hence the absolute value of their difference will also be zero all the time.

In this program we don't wait for the threads to join (as they contain infinite loop), we make the

main loop sleep for one second using the command sleep(1) and then we print the value of diff in

the following statement

puts "difference = #{diff}"

One would expect the value to be zero but we got it as 127524, in your computer the value could be

different as it depends on machine speed, what process its running and blah blah. But the moral is

diff that should be zero has some value, how come?

We see in the first loop that x is incremented and then y is incremented, lets say that at an instant x

value is 5 and y value is 4. x had just got incremented in the statement x += 1 and now the Ruby

interpreter is about to read and execute y +=1 which will make y from 4 to 5. At this stage the

174

https://raw.github.com/mindaslab/ilrx/master/thread_exclusion.rb

I Love Ruby 2015 Beta

second thread is executed by the computer. So in the statement

diff += (x­y).abs

putting x as 5 and y as 4 will mean that diff will get incremented by 1. In similar fashion while the

main loop sleeps for one second, the two thread we have created would have finished thousands of

loop cycles, hence the value of diff would increased significantly. Thats why we get the value of

diff as a large number.

Well, we have seen how not to write the program in a wrong way, lets now see how to write it in the

right way. Our task now is to synchronize the two threads that we have created so that one thread

does not access other threads resources when the other is in middle of some busy process. To do so

we will be using a thing called Mutex which means Mutual Exclusion. Type the following program

thread_exclusion_1.rb in text editor and execute it

#!/usr/bin/ruby
thread_exclusion_1.rb

require 'thread'

mutex = Mutex.new
x = y = 0
diff = 0
Thread.new {

loop do
mutex.synchronize do

x+=1
y+=1

end
end

}
Thread.new {

loop do
mutex.synchronize do

diff += (x­y).abs
end

end
}
sleep(1) # Here main thread is put to sleep
puts "difference = #{diff}"

Output

difference = 0

As you see above, we get output as difference = 0 , which means that diff variable is zero.

Some thing prevented the second thread from accessing x and y in the first thread while the first one

was busy. Some how the two threads have learned to share their resources. Study the code carefully,

we see that we have included a thread package by typing

175

https://raw.github.com/mindaslab/ilrx/master/thread_exclusion_1.rb

I Love Ruby 2015 Beta

require 'thread'

Next we have created a Mutex variable named mutex using the following command

mutex = Mutex.new

Well then the code is as usual except inside the threads. Lets look into the first thread

Thread.new {
loop do

mutex.synchronize do
x+=1
y+=1

end
end

}

We see that the statements x += 1 and y += 1 are enclosed in mutex.synchronize block. In

similar way the code computing the difference of x and y is also enclosed in mutex.synchronize

block as shown:

Thread.new {
loop do

mutex.synchronize do
diff += (x­y).abs

end
end

}

By doing so that we tell the computer that there is a common resource is shared by these two

threads and one thread can access the resource only if other releases it. By doing so, when ever the

difference (diff) is calculated in diff += (x­y).abs , the value of x and y will always be equal,

hence diff never gets incremented and stays at zero forever.

Deadlocks
Have you ever stood in a queue,or waited for something. One place we all wait is in airport for our

luggages to be scanned and cleared. Lets say that the luggage scanning machine gets out of order

and you are stuck in airport. You are expected to attend an important company meeting and you

have the key presentation and you must give an important talk. Since your baggage scanner failed

the resource needed by you is not available to you, and you have the key knowledge to talk in the

meeting and hence the meeting gets screwed up. One among the meeting might have promised to

take his family to a movie, he might return late after the delayed meeting and hence all screw up.

Imagine that the baggage scanner, you, a person who must listen to your meeting are threads of a

176

I Love Ruby 2015 Beta

Ruby program. Since the baggage scanner wont release a resource (your bag) your process gets

delayed and since you are delayed many other processes that depends on you are delayed. This

situation is called dead lock. It happens in Ruby programs too.

When ever situation like this arises people wait rather than to rush forward. You wait for your bag to

be released, your company waits for your arrival and the mans family waits for him to take them to

movie. Instead of waiting if people rush up it will result in chaos.

Ruby has a mechanism to avoid this chaos and to handle this deadlock. We use a thing called

condition variable. Take a look at the program (thread_condition_variable.rb) below, type it

and execute it.

#!/usr/bin/ruby
thread_condition_variable.rb

require 'thread'
mutex = Mutex.new

c = ConditionVariable.new
a = Thread.new {
 mutex.synchronize {
 puts "Thread a now waits for signal from thread b"
 c.wait(mutex)
 puts "a now has the power to use the resource"
 }
}

puts "(Now in thread b....)"

b = Thread.new {
 mutex.synchronize {
 puts "Thread b is using a resource needed by a, once its done it will
signal to a"
 sleep(4)
 c.signal
 puts "b Signaled to a to acquire resource"
 }
}
a.join
b.join

Output

Thread a now waits for signal from thread b
(Now in thread b....)
Thread b is using a resource needed by a, once its done it will signal to a
b Signaled to a to acquire resource
a now has the power to use the resource

177

https://raw.github.com/mindaslab/ilrx/master/thread_condition_variable.rb

I Love Ruby 2015 Beta

Study the program and output carefully. Look at the output. First the statement in Thread a gets

executed and it prints that thread a is waiting for Thread b to signal it to continue. See in thread a

we have written the code c.wait(mutex) , where c is the Condition Variable declared in the code

as follows:

c = ConditionVariable.new

See the highlighted code in thread_condition_variable.rb . So now thread a waits, now the

execution focused on thread b when the following line is encountered in Thread b

puts "Thread b is using a resource needed by a, once its done it will signal to
a"

it prints out that thread b is using some resource needed by a, next thread b sleeps for 4 seconds

because we have given sleep(4) in it. This sleep statement can be avoided, I have given a sleep

because while the reader executes the program it make him wait and gives a feel that how really

condition variable works.

Then after 4 seconds, Thread b signals to Thread a , its wait can end using the statement c.signal .

Now Thread a receives the signal and can execute its rest of its statements, i.e after c.signal

Thread a and Thread b can execute simultaneously.

Creating multiple threads
Lets say that you have a situation where you have to create many threads, and it must be done in

elegant way, say that a situation might arise you don't even know how many threads could be

created, but you must create them and the program should wait for them to join and then exit, so lets

see how to code that.

So type the program below into your text editor and run it

many_threads.rb

def launch_thread string
 thread = Thread.new do
 3.times do
 puts string
 sleep rand(3)
 end
 end
 return thread
end

threads = []
threads << launch_thread("Hi")

178

https://raw.github.com/mindaslab/ilrx/master/many_threads.rb

I Love Ruby 2015 Beta

threads << launch_thread("Hello")

threads.each {|t| t.join}

Output

Hi
Hello
Hello
Hello
Hi
Hi

If you are not getting the exact output as above, do not worry as there is some randomness in the

program. Let me explain the program so that it becomes clear to you.

First we declare an array that will hold the threads as shown below

threads = []

Next we will put an value into threads array using the function launch_thread as shown below

threads << launch_thread("Hi")

Lets analyze what goes on in the launch thread function, first we have a function as shown below

def launch_thread string
 …....
end

We are returning a variable called thread from the function

def launch_thread string
 return thread
end

We assign a newly created thread to the variable thread

def launch_thread string
 thread = Thread.new do
 end
 return thread
end

We put some code inside the newly created thread

def launch_thread string
 thread = Thread.new do
 3.times do
 puts string
 sleep rand(3)
 end
 end
 return thread
end

179

I Love Ruby 2015 Beta

Thats it. So in short we create the thread, run the code in it and return it which gets stored in threads

array. The same stuff happens in this line too

threads << launch_thread("Hello")

Now we have to wait for each thread to join the main program (or the main thread). So we write the

joining code as shown

threads.each {|t| t.join}

This will wait till all threads have completed and joins with the main code.

So we have written a program that can create as many threads as we want (in the above case two),

and all the threads will be gathered into an array and the main program will wait till all threads have

completed and joined with it and then would exit.

Now take look at many_threads_1.rb andmany_threads_2.rb , execute them and explain to

yourself how they work. Better write a good explanation for them and mail to 77minds@gmail.com

so that I can put it in this book.

many_threads_1.rb

def launch_thread string
 thread = Thread.new do
 3.times do
 puts string
 sleep rand(3)
 end
 end
 return thread
end

threads = []

4.times do |i|
 threads << launch_thread("Thread #{i}")
end

threads.each {|t| t.join}

many_threads_2.rb

def launch_thread string
 thread = Thread.new do
 3.times do
 puts string

180

https://raw.github.com/mindaslab/ilrx/master/many_threads_2.rb
https://raw.github.com/mindaslab/ilrx/master/many_threads_1.rb
mailto:77minds@gmail.com

I Love Ruby 2015 Beta

 sleep rand(3)
 end
 end
 return thread
end

threads = []

puts "How many threads should run?"
count = gets.to_i

count.times do |i|
 threads << launch_thread("Thread #{i}")
end

Thread Exception
When ever there is an exception when the program is running, and if the exception isn't handled

properly the program terminates. Lets see what happens when there is a exception in a thread. Type

the code thread_exception_true.rb in text editor and execute it.

#!/usr/bin/ruby
thread_exception_true.rb

t = Thread.new do
i = 5
while i >= ­1

sleep(1)
puts 25 / i
i ­= 1

end
end

t.abort_on_exception = true
sleep(10)
puts "Program completed"

Output

5
6
8
12
25
thread_exception_true.rb:8:in `/': divided by 0 (ZeroDivisionError)

from thread_exception_true.rb:8
from thread_exception_true.rb:4:in `initialize'
from thread_exception_true.rb:4:in `new'
from thread_exception_true.rb:4

181

https://raw.github.com/mindaslab/ilrx/master/thread_exception_true.rb

I Love Ruby 2015 Beta

Notice in the program we create a thread named t, and if you are quiet alert we haven't got t.join

in the program. Instead of waiting for the thread to join we wait long enough for the thread to

complete. For the thread to complete we wait for 10 seconds by using the statement sleep(10).

Notice the line t.abort_on_exception = true where we set that if there raises an exception in

the thread t, the program must abort. Lets now analyze whats in thread t. Thread t contains the

following code

t = Thread.new do
i = 5
while i >= ­1

sleep(1)
puts 25 / i
i ­= 1

end
end

Notice that we divide 25 by i and put out the result of the division. i is decremented by 1 in each

loop iteration, so when i becomes zero and when 25 is divided by it, it will raise an exception. So at

the sixth iteration of the loop, 25 is divided by zero, an exception is raised and the program stops by

spiting out the following

thread_exception_true.rb:8:in `/': divided by 0 (ZeroDivisionError)
from thread_exception_true.rb:8
from thread_exception_true.rb:4:in `initialize'
from thread_exception_true.rb:4:in `new'
from thread_exception_true.rb:4

This happens because we have set t.abort_on_exception to true (see the highlighted code).

What happens if we set it as false. Take a look at the program thread_exception_false.rb. In

the program we have set t.abort_on_exception as false. Type the program in text editor and run

it

#!/usr/bin/ruby
thread_exception_false.rb

t = Thread.new do
i = 5
while i >= ­1

sleep(1)
puts 25 / i
i ­= 1

end
end

t.abort_on_exception = false
sleep(10)

182

https://raw.github.com/mindaslab/ilrx/master/thread_exception_false.rb

I Love Ruby 2015 Beta

puts "Program completed"

Take a look at output

5
6
8
12
25
Program completed

As you can see from the output there is no trace of exception occurrence62. The code that comes

after thread t gets executed and we get output that says Program Completed. This is because we

have set abort_on_exception to be false.

You can see from the last two programs that we haven't used t.join , instead we have waited long

enough for the thread to terminate. This is so because once we join thread (that causes) exception

with the parent (in this case the main) thread, the exception that arises in the child thread gets

propagated to the parent / waiting thread so abort_on_exception has no effect even it set to true

or false. So when ever exception raises it gets reflected on our terminal.

Thread Class Methods
There are certain thread methods which you can use to manipulate the properties of the thread.

Those are listed below. If you can't understand a bit of it, never worry.

Sno. Method What it does

1. Thread.abort_on_exceptio
n

Returns the status of the global abort on exception
condition. The default is false. When set to true, will
cause all threads to abort (the process will exit(0)) if
an exception is raised in any thread.

2. Thread.abort_on_exceptio
n=

When set to true, all threads will abort if an
exception is raised. Returns the new state.

3. Thread.critical Returns the status of the global thread critical
condition.

4. Thread.critical= Sets the status of the global thread critical condition
and returns it. When set to true, prohibits scheduling
of any existing thread. Does not block new threads
from being created and run. Certain thread operations
(such as stopping or killing a thread, sleeping in the
current thread, and raising an exception) may cause a

62 Exception has occurred but its not reported / aborted.

183

I Love Ruby 2015 Beta

thread to be scheduled even when in a critical
section.

5. Thread.current Returns the currently executing thread.

6. Thread.exit Terminates the currently running thread and
schedules another thread to be run. If this thread is
already marked to be killed, exit returns the Thread.
If this is the main thread, or the last thread, exit the
process.

7. Thread.fork { block } Synonym for Thread.new

8. Thread.kill(aThread) Causes the given aThread to exit

9. Thread.list Returns an array of Thread objects for all threads that
are either runnable or stopped. Thread.

10. Thread.main Returns the main thread for the process.

11. Thread.new([arg]*)
{| args | block }

Creates a new thread to execute the instructions
given in block, and begins running it. Any arguments
passed to Thread.new are passed into the block.

12. Thread.pass Invokes the thread scheduler to pass execution to
another thread.

13. Thread.start([args]
*) {| args | block }

Basically the same as Thread.new . However, if class
Thread is subclassed, then calling start in that
subclass will not invoke the subclass's initialize
method.

14. Thread.stop Stops execution of the current thread, putting it into a
sleep state, and schedules execution of another
thread. Resets the critical condition to false.

Thread Instance Methods
Since everything in Ruby is an object, ia thread too is an object. Like many objects, threads have

functions or methods which can be called to access or set a property in thread. Some of the

functions and their uses are listed below (thr is an instance variable of the Thread class) :

Sno. Method What it does

1 thr.alive? This method returns true if the thread is alive or
sleeping. If the thread has been terminated it returns
false.

2 thr.exit Kills or exits the thread

3 thr.join This process waits for the thread to join with the

184

I Love Ruby 2015 Beta

process or thread that created the child thread. Once
the child thread has finished execution, the main
thread executes the statement after thr.join

4 thr.kill Same ad thr.exit

5 thr.priority Gets the priority of the thread.

6 thr.priority= Sets the priority of the thread. Higher the priority,
higher preference will be given to the thread having
higher number.

7 thr.raise(anException) Raises an exception from thr. The caller does not
have to be thr.

8 thr.run Wakes up thr, making it eligible for scheduling. If
not in a critical section, then invokes the scheduler.

10 thr.wakeup Marks thr as eligible for scheduling, it may still
remain blocked on I/O, however.

11 thr.status Returns the status of thr: sleep if thr is sleeping or
waiting on I/O, run if thr is executing, false if thr
terminated normally, and nil if thr terminated with an
exception.

12 thr.stop? Waits for thr to complete via Thread.join and returns
its value.

13 thr[aSymbol] Attribute Reference ­ Returns the value of a thread­
local variable, using either a symbol or a aSymbol
name. If the specified variable does not exist, returns
nil.

14 thr[aSymbol] = Attribute Assignment ­ Sets or creates the value of a
thread­local variable, using either a symbol or a
string.

15 thr.abort_on_exception Returns the status of the abort on exception condition
for thr. The default is false.

16 thr.abort_on_exception= When set to true, causes all threads (including the
main program) to abort if an exception is raised in
thr. The process will effectively exit(0).

185

I Love Ruby 2015 Beta

Exception Handling
In India, law does not apply to the rich and political class. They can do any thing and get away from

it. Though our laws says bribes are illegal, there is almost no Indian who hasn't paid bribe. Free

speech and bloggers are ruthlessly targeted. Everything is a exception here and law is mostly jus ink

on paper. We may not be able to do anything about the corrupt rich and politician, but we can

handle exceptions in Ruby! Well, let me explain to how to handle exceptions in Ruby programming

Lets write a program called division_exception.rb which will break due to division by zero.

Open your text editor, type the given code belopw in it and run it

division_exception.rb

puts 67 / 0

Output

division_exception.rb:3:in `/': divided by 0 (ZeroDivisionError)
from division_exception.rb:3:in `<main>'

As you see, you get a exception as output. See that the constant ZeroDivisionError is in bold. We

will see the use of in just a few examples. So when the Ruby interpreter notices that it can't handle

something, t raises an exception.

Now it will not be great if we throw out the exception tot our client who has paid millions for us to

produce a piece of program. We would rather try to put out something thats understandable to them.

So in the example shown below rescue.rb we see how to handle this exception. Type the program

below in an text editor and run it

rescue.rb

begin
 puts 67 / 0
 rescue
 puts "We are unable to proceed due to unavoidable reasons :("
end

Output

We are unable to proceed due to unavoidable reasons :(

186

https://raw.github.com/mindaslab/ilrx/master/rescue.rb
https://raw.github.com/mindaslab/ilrx/master/division_exception.rb

I Love Ruby 2015 Beta

As you can see instead of the nasty ZeroDivisionError output , you see a friendly message that its

unable to proceed due to unavoidable reasons. The trick is if you think some exception can occur in

code surround it with begin and end blocks as shown below

begin
 puts 67 / 0

end

Then the code that needs to be handled when there is a exception is put after a key word called

rescue as shown

begin
 puts 67 / 0
 rescue
 puts "We are unable to proceed due to unavoidable reasons :("

end

when there is an exception, the code below rescue starts executing,. Thats it! Well you now how to

deal with exceptions in a crude way.

Let now see a refined way to catch or rescue from an exception. See the code below rescue_1.rb,

type it and execute it

rescue_1.rb

begin
 puts 67 / 0
 rescue ZeroDivisionError
 puts "Oh nooo! boom thata has cursed us!!!!!"
end

Output

Oh nooo! boom thata has cursed us!!!!!

You see the out put that you are cursed by Boom Thata (God of Gods). Don't worry much about

that, Boom Thata is my friend and will talk to him to reverse it. See the highlighted / bold code.

Here we have put the code like this rescue ZeroDivisionError in it we are telling it to rescue if

and only zero division error occurs. If some other things happen, like if you are in Pakistan and a

missile from U.S drone strikes you, it won't be the ruby interpreter but possibly Boom thata must

rescue you.

Lets say that you want to print out an exception. Say for your debugging purpose or something. So

how to do that. The following program shows you that. Type the program

187

https://raw.github.com/mindaslab/ilrx/master/rescue_1.rb

I Love Ruby 2015 Beta

printing_exception.rb and run it

printing_exception.rb

begin
 puts 67 / 0
 rescue => e
 puts "The following exception has occured:"
 p e
end

Output

The following exception has occured:
#<ZeroDivisionError: divided by 0>

So as you can see, you can print an exception. Just note the highlighted line p e , its there where

we are printing an exception. e is the exception object and p is kind of short form for puts 63. Wish

you have noticed that this code rescue => e pushed the exception into an variable e. Thats how e

holds the exception.

In the next example, we are going to see how to back trace an exception. That is exception thats

been thrown in real world programs could be buried under multiple levels. To find that out you

better need to back trace it. Type the program below into text editor and run it.

backtracing_exception.rb

begin
 puts 67 / 0
 rescue => e
 p e.backtrace
end

Output

["backtracing_exception.rb:4:in `/'", "backtracing_exception.rb:4:in `<main>'"]

Th code where the back tracing occurs is highlighted if you can see. We are printing it using p

e.backtrace. If you can notice the output, it shows that exception has occurred in line 4, if you

have line numbers displayed in your text editor you can identify the line immediately and debug it.

Next (the second piece of output) it says the exception has occurred in main. You may wonder what

is main? Its the program in your text editor that is first run is called the main.

63 actually not really

188

https://raw.github.com/mindaslab/ilrx/master/backtracing_exception.rb
https://raw.github.com/mindaslab/ilrx/master/printing_exception.rb

I Love Ruby 2015 Beta

Exception and Threads
We have seen exception in ordinary programs that are single threaded, but Ruby is a multi threaded

programming language. Lets see how how exceptions and threads mix and behave. Type the

program thread_exception_true.rb and run it

#!/usr/bin/ruby
thread_exception_true.rb

t = Thread.new do
i = 5
while i >= ­1

sleep(1)
puts 25 / i
i ­= 1

end
end

t.abort_on_exception = true
sleep(10)
puts "Program completed"

Output

5
6
8
12
25
thread_exception_true.rb:8:in `/': divided by 0 (ZeroDivisionError)

from thread_exception_true.rb:8:in `block in <main>'

As you see the program throws out an ZeroDivisionError exception, this happens in while loop

when the value of i becomes zero and 25 needs to be divided by it. Notice the line in bold

t.abort_on_exception = true , here we tell the program to abort or stop when there is an

exception. This hence will stop all other threads if they are running in parallel. Lets say that you

have a multithreaded program where it is a must that all threads must run without an exception, and

threads are kind of dependent on each other, then its better to write code in such a way that the

program aborts when exception is raised in one of the threads.

Lets say that a program we write is such that exception on a thread can be ignored and other threads

can run merrily then see the highlighted line in program below thread_exception_false.rb.

Here we specify t.abort_on_exception = false , so the program runs, when an exception

occurs, the particular thread stops running, whereas other threads continue to run as though nothing

happened.

189

https://raw.github.com/mindaslab/ilrx/master/thread_exception_true.rb

I Love Ruby 2015 Beta

#!/usr/bin/ruby
thread_exception_false.rb

t = Thread.new do
i = 5
while i >= ­1

sleep(1)
puts 25 / i
i ­= 1

end
end

t.abort_on_exception = false
sleep(10)
puts "Program completed"

Output

5
6
8
12
25
Program completed

Raising Exceptions
We have seen how to catch an exception and deal with it. But what if we want to raise our own

exceptions? Type the program raise.rb in text editor and execute it.

raise.rb

puts "Enter a number 1 ­ 10:"
num = gets.to_i
raise "You did not enter right num" unless (1..10).include? Num

Output

Enter a number 1 ­ 10:
25
raise.rb:5:in `<main>': You did not enter right num (RuntimeError)

As you can see from the output the program raises exception if any number entered does not lie

from 1 to 10. See the highlighted piece of code raise "You did not enter right num" , thats

all it takes to raise an exception in Ruby. The key word raise followed by an object. In this case we

put out a string, but it would be nice if we put out a constant which is the norm of raising

exceptions. The program below raise_1.rb shows how to deal with your own exceptions which is

no different from rescue programs you have written before.

190

https://raw.githubusercontent.com/mindaslab/ilrx/ff6aedcc322a180eb16d2b3baaee53a21a49eb00/raise.rb
https://raw.github.com/mindaslab/ilrx/master/thread_exception_false.rb

I Love Ruby 2015 Beta

raise_1.rb

def number_thing(num)
 raise "You did not enter right num" unless (1..10).include? num
 puts "You entered #{num} :)"
end

puts "Enter a number 1 ­ 10:"
num = gets.to_i
begin
 number_thing(num)
rescue
 puts "You may have not entered number in valid range"
end

Output

Enter a number 1 ­ 10:
25
You may have not entered number in valid range

191

https://raw.githubusercontent.com/mindaslab/ilrx/ff6aedcc322a180eb16d2b3baaee53a21a49eb00/raise_1.rb

I Love Ruby 2015 Beta

Regular Expressions
You are with your girl friend in a jewel shop, she chooses one of the finest diamond rings and gives

you THAT LOOK... Sure you know that you will fall into more credit card debt. You are in another

day and having a talk with your boss to get more salary when he stares at you. THAT LOOK. You

now know that what ever thing you say that you did good to the company, it will be ignored and

would be futile. We all see for expressions in others face and we try to predict what next from it.

Lets say that you are on chat with your friend and he types :-) , you know he is happy, this :-(means

he's sad. So its quiet evident that we can see expressions even in textual data just as we see in each

others face. Ruby's regular expression provides you with a way to detect these patterns in a given

text and extract them if you wish. This can be used for some thing good. So this chapter is about

that. What Ruby does not do is to tell you how to impress your girl without getting into debt :-(.

Wish to report this as a bug and hope they will fix it in ruby 2.x ;-)

So fire up your irb, lets begin

Creating a empty regexp
Okay we will try to create a empty regular expression. In your terminal type irb ­–simple­

prompt and in it type the following (without the >> , which is irb's prompt)

>> //.class
 => Regexp

You see //.class is Regexp. In other words any thing between those / and / is a regexp64 . Regexp

is not a string, but it denotes a pattern. Any string can match or may not match the pattern.

Detecting Patterns
Lets now see how to detect patterns in a regular expressions. Lets say that you want to see that abc

is in a given string. Just punch the code below

>> /abc/.match "This string contains abc"
 => #<MatchData "abc">

abc is present in the given string hence you get a match. In the code snippet below, there is no abc

in the string and hence it returns nil.

64 Will be using regexp instead of Regular expression from no on

192

I Love Ruby 2015 Beta

>> /abc/.match "This string contains cba"
 => nil

You can use the match function on a regexp as shown above or u can use it on a string, as shown

below. Both gives you the same result.

>> "This string contains abc".match(/abc/)
=> #<MatchData "abc">

Another way of matching is shown below. You can use the =~ operator.

>> "This string contains abc" =~ /abc/
=> 21
 >> /abc/ =~ "This string doesn't have abc"
 => 25

The =~ tells you the location where the first occurrence of the match occurs.

Things to remember
There are some things you need to remember, or at least refer from time to time. Those are

mentioned in table below65.

Thing What it means

. Any single character

\w Any word character (letter, number, underscore)

\W Any non-word character

\d Any digit

\D Any non-digit

\s Any whitespace character

\S Any non-whitespace character

\b Any word boundary character

^ Start of line

$ End of line

\A Start of string

\z End of string

[abc] A single character of: a, b or c

[^abc] Any single character except: a, b, or c

[a-z] Any single character in the range a-z

[a-zA-Z] Any single character in the range a-z or A-Z

(...) Capture everything enclosed

65 I got this list from http://rubular.com/

193

http://rubular.com/

I Love Ruby 2015 Beta

Thing What it means

(a|b) a or b

a? Zero or one of a

a* Zero or more of a

a+ One or more of a

a{3} Exactly 3 of a

a{3,} 3 or more of a

a{3,6} Between 3 and 6 of a

i case insensitive

m make dot match newlines

x ignore whitespace in regex

o perform #{...} substitutions only once

Don't panic if you don't understand this, as I myself know nothing of it.

The dot
The dot in a regular expression matches any thing,. To illustrate it lets try some examples in our irb

>> /.at/.match "There is rat in my house"
=> #<MatchData "rat">

in the above code snippet, we try to match /.at/ with a string, and it matches. The reason, the

string contains a word called rat. Take a look at another two examples below, the /.at/ matches

cat and bat without any fuss.

>> /.at/.match "There is cat in my house"
=> #<MatchData "cat">

>> /.at/.match "There is bat in my house"
=> #<MatchData "bat">

Its not a rule that the dot should be at the start of the word or something, it can be any where. A

regexp /f.y/ could comfortably match fry and fly. Ah! I wish I have a chicken fry now. Any way

chickens do fly.

Character classes
Lets say tat we want to find that weather there is a bat or a rat or a cat is present in a given string. If

there I will print that there is a animal in the house,else we won't print a thing. You might be

thinking that we need to have three regexp like /bat/ , /cat/ and /rat/ , but thats not the case. We

194

I Love Ruby 2015 Beta

know from those three regexp that only the first character varies. So what about /.at/ like the

previous one. Well that won't work either. Because if you eat too much and don't exercise well, that

would match even fat …. :-)) It will also match mat and tat and any other unwanted stuff too.

So this time strictly we want to match only bat rat and cat, so we come up with a regexp like this: /

[bcr]at/ , this will only match those three animal words and nothing else. Punch in the following

example and run it in your computer

#!/usr/bin/ruby
regexp_character_classes.rb

puts "There is a animal in your house" if /[bcr]at/.match "There is bat in my
house"
puts "There is a animal in your house" if /[bcr]at/.match "There is rat in my
house"
puts "There is a animal in your house" if /[bcr]at/.match "There is cat in my
house"
puts "There is a animal in your house" if /[bcr]at/.match "There is mat in my
house"

Output

There is a animal in your house
There is a animal in your house
There is a animal in your house

As you can see from the output above, the string “There is a animal in your house” gets printed

thrice and not the fourth time where the match fails for "There is mat in my house".

Character classes can also accept ranges. Punch in the code below and run it.

#!/usr/bin/ruby
regexp_character_classes_1.rb

print "Enter a short string: "
string = gets.chop
puts "The string contains character(s) from a to z" if /[a­z]/.match string
puts "The string contains character(s) from A to Z" if /[A­Z]/.match string
puts "The string contains number(s) from 0 to 9" if /[0­9]/.match string
puts "The string contains vowels" if /[aeiou]/.match string
puts "The string contains character(s) other than a to z" if /[^a­z]/.match
string
puts "The string contains character(s) other than A to Z" if /[^A­Z]/.match
string
puts "The string contains number(s) other than 0 to 9" if /[^0­9]/.match string
puts "The string contains characters other than vowels" if /[^aeiou]/.match
string

Output

Enter a short string: fly
The string contains character(s) from a to z
The string contains character(s) other than A to Z

195

https://raw.github.com/mindaslab/ilrx/master/regexp_character_classes_1.rb
https://raw.github.com/mindaslab/ilrx/master/regexp_character_classes.rb

I Love Ruby 2015 Beta

The string contains number(s) other than 0 to 9
The string contains characters other than vowels

Output 1

Enter a short string: Burgundy 32
The string contains character(s) from a to z
The string contains character(s) from A to Z
The string contains number(s) from 0 to 9
The string contains vowels
The string contains character(s) other than a to z
The string contains character(s) other than A to Z
The string contains number(s) other than 0 to 9
The string contains characters other than vowels

OK, what you infer from the output? When you give fly these regexp's match:

• /[a­z]/ since it contains a character from a to z

• /[^A­Z]/ since it contains a character that does not belong any where from A to Z, hence

you come to know ^ inside a capture means negation. There are also other uses for ^ which

if I am not lazy you will be writing about it.

• /[^0­9]/ since it does not contain any numbers from 0 to 9

• /[^aeiou]/ since it does not contain a vowel (a or e or i or o or u)

According to that the messages in the puts statements gets printed.

Now look at the Output 1, I have given the program a string Burgundy 27 , check if your

assumptions / logic tally with it ;-)

Scanning
I love this scan method in String Class. It lets us search a huge array of string for something. Just

like needle in a haystack, since computers are getting faster and faster you can scan more and more.

They are good for searching. They are quiet unlike the police in India, who would only conduct a

search only if the person who has been burgled gives bribe.

So punch in the program below. It scans for words in a string.

#!/usr/bin/ruby
regexp_scan.rb

string = """ There are some words in this string and this program will
scan those words and tell their word count """

196

https://raw.github.com/mindaslab/ilrx/master/regexp_scan.rb

I Love Ruby 2015 Beta

words = string.scan(/\w+/)
puts "The words are:"
p words
puts # prints a empty line
puts "there are #{words.count} words in the string"
puts "there are #{words.uniq.count} unique words in string"

Output

The words are:
["There", "are", "some", "words", "in", "this", "string", "and", "this",
"program", "will", "scan", "those", "words", "and", "tell", "their", "word",
"count"]

there are 19 words in the string
there are 16 unique words in string

Note the /\w+/ what does it mean? Refer this table by clicking here. You can see that \w means any

character like letter, number, underscore and + mean one or many. In other words I have assumed

that words consists of any letter, number and underscore combinations and a word contains at-least

one letter or more. So the statement string.scan(/\w+/) will scan all words and put into into a

variable called words which we use in this program.

The statement p words prints out the array and in the following line

puts "there are #{words.count} words in the string"

we are counting the number of elements in the array words using the command word.count and

embedding in a string using #{words.count} and printing it out to the user.

In the next statement

puts "there are #{words.uniq.count} unique words in string"

we are finding how many unique words are there in the given string using words.uniq.count and

printing that too to the user. For example if you scan a large book of two authors and feed it to this

program, the person who has more number of unique words can be assumed to have better

vocabulary.

Lets now see another program. For example take a tweet you will do on twitter and you want to find

out if the tweet contains twitter user names. So lets analyze a twitter user name, it first contains an

@ symbol followed by a word. In other words it must match the regexp /@\w+/ , well simple. In

the following program we scan all the users mentioned in a tweet

#!/usr/bin/ruby
regexp_scan_twitter_users.rb

197

https://raw.github.com/mindaslab/ilrx/master/regexp_scan_twitter_users.rb

I Love Ruby 2015 Beta

string = """ There is a person @karthik_ak who wrote ilr. Its about a
language called @ruby invented by @yukihiro_matz """

users = string.scan(/@\w+/)
puts "The users are:"
p users

Output

The users are:
["@karthik_ak", "@ruby", "@yukihiro_matz"]

Notice the highlighted statement in the program above. It scans all words that is perpended with an

@ symbol, collects them and returns them as an array. Ans we just display that array using p users

.

Captures
We have seen how useful regular expressions could be. Now let say we found a match with a

regular expression and we just want to capture a small part of it, say a user name in a email, or a

moth in some ones date of birth, how to do that?

We use round brackets for that and we call them captures (technically). Below is a program that

asks birthday of a person and extracts the month out of it.

#!/usr/bin/ruby
regexp_capture.rb

print "Enter Birthday (YYYY­MM­DD) :"
date = gets.chop
/\d{4}­(\d{2})­\d{2}/.match date
puts "You were born on month: #{$1}"

Output

Enter Birthday (YYYY­MM­DD) :1982­11­22
You were born on month: 11

Notice this line /\d{4}­(\d{2})­\d{2}/.match date , here we check if the date matches the

following: That is, it must have four digits /\d{4}/ , then it must be followed by a hyphen

/\d{4}­/ then it must be followed by two digits /\d{4}­\d(2}/ and it must be followed a

hyphen and another two digits /\d{4}­\d{2}­\d{2}/ .

Now we need to capture just the month thats in the middle. Hence we put braces around it like

shown /\d{4}­(\d{2})­\d{2}/ , we stick this regexp in the program above, in this line

/\d{4}­(\d{2})­\d{2}/.match date

198

https://raw.github.com/mindaslab/ilrx/master/regexp_capture.rb

I Love Ruby 2015 Beta

Now where this capture (\d{2}) gets stored? It gets stored in a global variable $1, if there is

another capture, it gets stored in another variable $2, $3 and so on..... So we now know $1 has the

month and we use it in the following line to print out the result

puts "You were born on month: #{$1}"

In the coming example regexp_capture_1.rb , we try three captures where we want to capture

Year, Month and Date in one go. Hence we use the following regexp /(\d{4})­(\d{2})­

(\d{2})/ . Type the program below and execute it.

#!/usr/bin/ruby
regexp_capture_1.rb

print "Enter Birthday (YYYY­MM­DD) :"
date = gets.chop
/(\d{4})­(\d{2})­(\d{2})/.match date
puts "Year: #{$1} \n Month: #{$2} \n Date: #{$3}"

Output

Enter Birthday (YYYY­DD­MM) :1997­12­67
Year: 1997
 Month: 12
 Date: 67

Here the first capture starting from left is stored in $1, the second is stored in $2 and the third in $3

and so on (if we had given more). If you are wondering what $0 is, why don't you give a puts $0

statement at the end of the program and see what happens?

In the next program, we have designed it to tolerate some errors in user input. The user may not

always give 1990­04­17 , he might give it as say 1990 – 04­ 17 or some thing like that that

might have spaces around numbers. Type int the program and execute it

#!/usr/bin/ruby
regexp_capture_2.rb

print "Enter Birthday (YYYY­MM­DD) :"
date = gets.chop
/\s*(\d{4})\s*­\s*(\d{2})\s*­\s*(\d{2})\s*/.match date
puts "Year: #{$1} \n Month: #{$2} \n Date: #{$3}"

Output

Enter Birthday (YYYY­MM­DD) :1947­ 07 ­ 14
Year: 1947
 Month: 07
 Date: 14

As you can see, the program rightly finds month, date and year! Well if you note the regexp we are

using /\s*(\d{4})\s*­\s*(\d{2})\s*­\s*(\d{2})\s*/ we have padded digits with \s*, now

199

https://raw.github.com/mindaslab/ilrx/master/regexp_capture_2.rb
https://raw.github.com/mindaslab/ilrx/master/regexp_capture_1.rb

I Love Ruby 2015 Beta

whats that. Once again refer the regexp table by clicking here. \s means space and * means zero or

more, so say \s*\d{4} means match in such a way that the regexp has 4 digits and is perpended

with zero or more spaces and \s*\d{4}\s* match a 4 digit number which is perpended and

followed by zero or more spaces. Hence no matter how much padding you give with space, it

rightly finds out the dates.

Nested Capture

Sometimes some wise crack programmer just out of sheer luncticity66 or just to make fun of your

regexp skills or to challenge you, or for some other reason might perform a nested capture. That is a

capture within a capture.

I haven't done it so far my self, but wish to do it in practical applications for the fun of it. Now I

have worked out a nested capture example here on irb and if you like, try it

>> /(a(c(b)))/.match "This sting contains acb ao it has match"
=> #<MatchData "acb" 1:"acb" 2:"cb" 3:"b">
>> $1
=> "acb"
>> $2
=> "cb"
>> $3
=> "b"

See the highlighted part, the regexp is like this /(a(c(b)))/ , does it makes any sense to you? Well

then how to read it? First remove all brackets and read it like /acb/ . acb is present in the string

and hence its matched so we get the highlighted part in output as shown below

=> #<MatchData "acb" 1:"acb" 2:"cb" 3:"b">

Now apply the outer most bracket from left and we get a capture as shown /(acb)/ , this matches

and captures acb which appears in highlighted part in output as shown below

=> #<MatchData "acb" 1:"acb" 2:"cb" 3:"b">

This capture s stored in $1 global variable. Now forget the outer bracket and move from left to the

second pair of brackets and you get the following regexp /a(cb)/ , this matches acb and captures

cb in the string, this is caught in variable $2 and is also shown in highlighted part of the matched

data below

=> #<MatchData "acb" 1:"acb" 2:"cb" 3:"b">

66 I like to create new english words :-))

200

I Love Ruby 2015 Beta

In similar way the inner most bracket pair, forms this regexp /ac(b)/ and its captured in variable

$3 is showed in matched output below

=> #<MatchData "acb" 1:"acb" 2:"cb" 3:"b">

MatchData class
So you have matched stuff and captured it. Well if you have noticed in the irb, when ever u match a

thing, a object gets returned. Well all is a object in Ruby, yup, but this is not String type object, but

a new type called MatchData. So lets play with it and see what it can do. So see the example below

where we match a regexp /abc/ with a string and we store it in a variable m

>> m = /abc/.match "This stuff has abc and something after it"
=> #<MatchData "abc">

To see what was matched, we give the command m.match and its throws an error as shown below!

>> m.match
NoMethodError: undefined method `match' for #<MatchData "abc">

from (irb):2
from /home/webtoday/.rvm/rubies/ruby­1.9.3­p194/bin/irb:16:in `<main>'

So how to get the match? Well, it looks like the MatchData is an array where the first element is the

matched piece of text so just type m[0] to get the matched data as shown below

>> m[0]
=> "abc"

some times you might be interested what comes before and after a match. The pre_match function

gets the piece of text that is prior to the match as shown below

>> m.pre_match
=> "This stuff has "

Like pre_match, post_match does the opposite, it gets the piece of text that comes after the match.

>> m.post_match
=> " and something after it"

If you want to see weather you have any captures, you can call the captures function as shown.

>> m.captures
=> []

Of course you have no captures this time, hence the captures function returns an empty array.

Well, talking about captures in MatchData object , take a look at the piece of code below. We have

given a regexp with capture as shown /((ab)c)/ . This regexp in the the string "This stuff has

201

I Love Ruby 2015 Beta

abc and something after it" will match abc and will capture abc and ab (if you have

understood what capture is in the previous sections). Well how to to get captures in MatchData

object, first let us match the regexp with string and store it variable m as shown below

>> m = /((ab)c)/.match "This stuff has abc and something after it"
=> #<MatchData "abc" 1:"abc" 2:"ab">

Now to see captures, use the capture function on MatchData object as shown below

>> m.captures
=> ["abc", "ab"]

So you get captures as Array which can be treated as an Array object. Yo can get the captures

directly from MatchData too as shown below, the second element onwards in the MatchData array

stores the captures which can be accessed by m[1], m[2] …... m[n] as shown in the case below

>> m[1]
=> "abc"
>> m[2]
=> "ab"

Well, I have told that m belongs to MatchData class, and haven't offered proof yet. Well here is it

>> m.class
=> MatchData

Anchors and Assertions

Anchors

Anchors are reference points in Ruby. Lets say that we want to check if a line immediately begins

with a =begin67 , then I can check it wit a regexp like this /^=begin/ , where the ^ sign is a anchor

that represents beginning of the line:

/^=begin/.match "=begin"
=> #<MatchData "=begin">

Lets say like we have multiple line string and we want to extract a line (the first one). So the content

of the first line could be any thing, so we get a regexp as /.+/, now it must be between beginning

of line ^ and end of line $, so we get a regexp as shown /^.+$/ , s this will match anything thats

between line anchors. An example is shown below.

>> /^.+$/.match "Boom \n Thata"
=> #<MatchData "Boom ">

In the above example, note that \n splits the string into two lines as \n stands for newline character.

67 =begin represents start of block comment in Ruby, but it must start at the line beginning

202

I Love Ruby 2015 Beta

So the regexp faithfully matches the first line content, that is “Boom ”.

The next type of Anchors we have are \A that stands for start of a string and \z that stands for end

of a string. In the example below, we check if the string starts with some thing by using the

following regexp /\ASomething/

>> /\ASomething/.match "Something is better than nothing"
=> #<MatchData "Something">

And we get a match. In the example below we get a nil match because the string does not start with

Something.

>> /\ASomething/.match "Everybody says Something is better than nothing"
=> nil

Now lets check if nothing is followed by end of string, hence we form a regexp as shown

/nothing\z/

>> /nothing\z/.match "Everybody says Something is better than nothing"
=> #<MatchData "nothing">

As expected we get a match of nothing. One should not that anchors will not be reflected in match

data, anchor is not a character, but just a symbolic representation of position. So if you are

expecting a match of nothing\z , forget it.

>> /nothing\z/.match "Everybody says Something is better than nothing\n"
=> nil

Look at the example above, the \z matches a string without a line ending(\n) character. If you want

to check for line endings, you must use capital Z like the example shown below.

>> /nothing\Z/.match "Everybody says Something is better than nothing\n"
=> #<MatchData "nothing">

So :-) it matches!

In the example below, we match all the stuff thats in a string with \n as its ending.

>> /\A.+\Z/.match "Everybody says Something is better than nothing\n"
=> #<MatchData "Everybody says Something is better than nothing">

Assertions

Lets say that you are searching for this man David Copperfield, perhaps to make your nagging girl

friend or wife to disappear so that you can get a new one. You have a huge directory of names and

you want to match his name. We can do those kind of matches using assertions68 . So you want to

68 If you are thinking that this can be searched in much simple way, then ur right, but for the time being don't think too
much. Your brain might overheat and burn.

203

I Love Ruby 2015 Beta

search something that comes before Copperfield, for that we use look ahead assertions. Take the

example below

>> /\w+\s+(?=Copperfield)/.match "David Copperfield"
=> #<MatchData "David ">

Look at the code thats been made bold. It has (?=Copperfield) , that is its looking forward for

something, this time its Copperfield. Want to become rich soon, then search for (?=Goldfield) and

want some good music, search for (?=Oldfield)69. Okay I am typing too much.

Here is the thing, what ever you give between (?= and) will be look forward and if there is

something before it, it will be matched. So there is David before Copperfield, hence it was matched.

Note that I had given \w+\s+ which means that I want to match a regexp of one or more letters,

followed by one or more spaced that precedes before Copperfield. So here we have another

example, that gives a positive match:

>> /\w+\s+(?=Copperfield)/.match "Joan Copperfield"
=> #<MatchData "Joan ">

Lets say that we want to match all those names which does not end with Copperfield, we will use

look ahead, negative assertion. For this we put Copperfield in between (?! and), so in the

following example it will return a negative match

>> /\w+\s+(?!Copperfield)/.match "Joan Copperfield"
=> nil

But in the next example it will return a positive match, because Joan is not before Copperfield

>> /\w+\s+(?!Copperfield)/.match "Joan Kansamy"
=> #<MatchData "Joan ">

We have seen look forward assertion. Now lets look at look backward assertion. Lets say that we

wan to match last name of person who's first name is David. Then we can look backwards from last

name and see if its David. Checkout the code below

>> /(?<=David)\s+\w+/.match "Joan Kansamy"
=> nil

See the highlighted part. We have put David between (?<= and), so thats how you specify look

back assertion. The above code returns nil because we have no David in it.

>> /(?<=David)\s+\w+/.match "David Munsamy"
=> #<MatchData " Munsamy">

The above example matches “ Munsamy”70 because we have David before the pattern \s+\w+

Same way like we had negative look forward, why can't we have it in look backwards? Jut replace

69 Mike Oldfield is my favorite musician
70 Notice the space too which has been matched.

204

I Love Ruby 2015 Beta

= with a ! and you will get a negative assertion. So the example below will not match because you

have David in front of Munsamy.

>> /(?<!David)\s+\w+/.match "David Munsamy"
=> nil

Now take this example below, we will have a match because there is no David in front of the first

\s+\w+ , that is in the example below it is a space followed by “in”.

>> /(?<!David)\s+\w+/.match "All in all Munsamy"
=> #<MatchData " in">

Ignoring Cases
Okay, lets say what the difference between these emails 77minds@gmail.com and

77MINDS@GMAIL.COM , in short nothing, both address delivers mail to me, so if at all we are

scanning a string for a particular email, we would like to ignore cases. So consider the example

below

>> /abc/i.match "There is ABC in string"
=> #<MatchData "ABC">

Int the above example we have a regexp /abc/ but it matches ABC in the given string. If you have

noticed the highlighted / bold part, you may notice that I have put an i after the regexp, that i

stands for ignore case. Well see the example below, the i ruthlessly matches anything and does not

care about cases.

>> /abc/i.match "There is AbC in string"
=> #<MatchData "AbC">

Hope this explanation suffice.

Ignore Spaces
I don't really know where to use this x . x just like i should be use at the rear of regexp. It ignores

white spaces in regexp and matches the string. See example below

>> /ab c/x.match "There is abc in string"
=> #<MatchData "abc">

But this does not mean that it ignores white spaces in matched string, in the example below we have

a regexp /ab c/ (ab space c) but it does not match ab c (ab space c) in the string! That could be

surprising, but when x is appended, it mean it removes all spaces from regexp.

>> /ab c/x.match "There is ab c in string"

205

mailto:77minds@gmail.com
mailto:77minds@gmail.com

I Love Ruby 2015 Beta

=> nil

Dynamic Regexp
We may need to create Regexp dynamically, say I want to create a search query from the user data I

obtained. Take a look at the program below, type it in a text editor and run it

regexp_dynamic.rb

Friends = [
 "Bharath ­ Looks like alien",
 "Nithya ­ The MBA. Oh NOOOOOO",
 "Tat ­ The eskimo from Antartica",
 "Kannan ­ Eats lot of bondas",
 "Karthik ­ Loves briyani"
]

print "Enter search term: "
term = gets.chop
regexp = Regexp.new term
searched_friends = Friends.collect{|f| f if f.match regexp}.compact
puts searched_friends.join "\n"

Output

Enter search term: The
Nithya ­ The MBA. Oh NOOOOOO
Tat ­ The eskimo from Antartica

In the code we first declare an array called Friends ,that contains data about our friends as shown

Friends = [
 "Bharath ­ Looks like alien",
 "Nithya ­ The MBA. Oh NOOOOOO",
 "Tat ­ The eskimo from Antartica",
 "Kannan ­ Eats lot of bondas",
 "Karthik ­ Loves briyani"

]

So lets analyze the code Int the next two lines (shown below), I am getting search term and

assigning it to a variable term

print "Enter search term: "

term = gets.chop

Next look at the following line carefully

regexp = Regexp.new term

206

https://raw.githubusercontent.com/mindaslab/ilrx/master/regexp_dynamic.rb

I Love Ruby 2015 Beta

Look at the highlighted or bold part Regexp.new term , here is where all miracle happens. Now

open irb and type the following

>> Regexp.new "something"
=> /something/

So as you see when you give a string to Regexp.new it converts it to Regexp. You can do pretty

advanced stuff as shown below

>> r = Regexp.new "(\\d+)\\s+oranges"
=> /(\d+)\s+oranges/

So in Regexp.new term , we are converting the term to regular expression. Now all we need to do

is to use this regular expression and pick up the strings that match it in the following code

searched_friends = Friends.collect{|f| f if f.match regexp}.compact

We print the array in the following code

puts searched_friends.join "\n"

Take a look at the simple calculator program I have written here

https://raw.githubusercontent.com/mindaslab/ilrx/master/x/calculator.rb , it might be complex for

newbies, so don't get pissed if you can't understand it.

207

https://raw.githubusercontent.com/mindaslab/ilrx/master/x/calculator.rb

I Love Ruby 2015 Beta

Gems
Gem is a package management stuff for ruby. For example you might want to do a stuff in ruby, like

say comparing two hashes, rather than writing a code by your self you can search ruby gems

repository located at http://rubygems.org

Searching a gem
So you want to compare two hashes, why? Because I have written here so. So some angel

descended from sky and told you that there is a gem called hash_compare for comparing hashes.

Now, you can goto http://rubygems.org and search for “hash compare” without the double quotes of

course

You will be getting a page as shown below, click on the hash compare link and you will be directed

to this page https://rubygems.org/gems/hash_compare

208

https://rubygems.org/gems/hash_compare
http://rubygems.org/
http://rubygems.org/

I Love Ruby 2015 Beta

So thats how you search71 for a gem. On the contrary, if you search for exact gem name

hash_compare, http://rubygems.org has become smart now, and will take you stright to the gem

page.

Installing gem
Now that you have found out the gem, how to install it? If you are in the gems page,

https://rubygems.org/gems/hash_compare in this case you will get the instruction to install it on

your computer. You can install hash_compare gem by typing the following

$ gem install hash_compare
This will spit out the following stuff indicating that it has installed
Fetching: hash_compare­0.0.0.gem (100%)
Successfully installed hash_compare­0.0.0
1 gem installed
Installing ri documentation for hash_compare­0.0.0...
Installing RDoc documentation for hash_compare­0.0.0...

That is typing gem install gem_name in terminal should install most of the gems without a

trouble.

71 If you can't find it out, seek help of local police

209

https://rubygems.org/gems/hash_compare
http://rubygems.org/

I Love Ruby 2015 Beta

Viewing Documentation
Right so you have installed a gem successfully, now you must know how to use it, where else is a

great place to learn about a piece of ruby code than its documentation. If ou are not sure about rdoc

or ruby documentation, just read the chapter Rdoc .

To see documentation for installed gem, you need to start a thing called gem server, which can be

achieved by typing the following command in terminal.

$ gem server
Server started at http://0.0.0.0:8808

The above command will spit a output saying that the server has been started. To know about hash

compare gem goto this address http://0.0.0.0:8808 in your browser and search for hash_compare,

else if you need to have a shorter way click this link http://0.0.0.0:8808/#hash_compare , when you

click on hash_compare you will be directed here http://0.0.0.0:8808/doc_root/hash_compare-

0.0.0/rdoc/index.html , this is the documentation page for hash_compare gem.

There in that page, you will have sufficient details (possibly) about hash_compare gem.

Using gem
OK, to use the gem72 we in our terminal log in into irb using the following command

$ irb ­­simple­prompt

Next we will require hash compare command using the following command

>> require 'hash_compare'
=> true

And since the gem has been installed it says true. Now lets build two hashes a and be as shown

below

>> a = { a: 1, b: 2}
=> {:a=>1, :b=>2}
>> b = { a: 1, b: 3, c: 2}
=> {:a=>1, :b=>3, :c=>2}

Now we add these to hash_compare object

>> h = HashCompare.new a,b

And find whats newly added using the newly_added function as shown below

>> h.newly_added
=> {:c=>2}

72 I will use it in irb, I don't have the patience to use it in a ruby file.

210

http://0.0.0.0:8808/doc_root/hash_compare-0.0.0/rdoc/index.html
http://0.0.0.0:8808/doc_root/hash_compare-0.0.0/rdoc/index.html
http://0.0.0.0:8808/#hash_compare
http://0.0.0.0:8808/
http://0.0.0.0:8808/

I Love Ruby 2015 Beta

Well, thats it. You might have learned how to use a gem.

The Gemfile
You must have heard of Ruby gems, you will be creating it and publishing it on http://rubygems.org

soon. Now lets see whats the use of Gemfile.

Checkout these files:

The first one is called requester.rb

requester.rb

require 'rubygems'
require 'bundler/setup'
Bundler.require(:default)

resource = RestClient::Resource.new 'http://nothing.com'
p resource.get

The second one is the Gemfile which has the following content

source 'https://rubygems.org'

gem 'rest­client'

Put both in the same folder. If you look at requester.rb, it sends a request to http://nothing.com

using the following lines

resource = RestClient::Resource.new 'http://nothing.com'
p resource.get

and prints it. For this to take place we need install a gem called rest­client using the command

$ gem install rest­client

and we need to require it requester.rb using the following line

require 'rest­client'

In other words the code must look as shown

require 'rest­client'

resource = RestClient::Resource.new 'http://nothing.com'

211

http://nothing.com/
https://github.com/mindaslab/ilrx/blob/master/fetch_data/Gemfile
https://raw.githubusercontent.com/mindaslab/ilrx/master/fetch_data/requester.rb
http://rubygems.org/

I Love Ruby 2015 Beta

p resource.get

So why we have these three lines

require 'rubygems'
require 'bundler/setup'
Bundler.require(:default)

instead of one? Well let me explain. First this one is a simple project, which requires just one gem,

in reality we might need tens of them in real life project. Before running the project if we do not

have those gems in our system we need to manually check if each and every gem exists and install

it. This might be simple for few gems, but the truth is if we have lots of gems we are going to hate

it.

Welcome to the Ruby way, here is where the Gemfile comes as saviour. Lets analyze it. Open up the

Gemfile, the first line is

source 'https://rubygems.org'

This tells the bundler (the thing that fetches and install gems) from where the gems must be fetched.

Almost all ruby gems end up in http://rubygems.org. there are some bad guys however who like to

have proprietary code and don't release it to public. Those suckers keep it for themselves, for them

it will be something different .

Next we just list the gems needed in this format gem "<gem­name>" one by one. In this case we just

have only one gem and so we list it as

gem 'rest­client'

Next in the ruby program that needs those gems we put this piece of code at the top

require 'rubygems'
require 'bundler/setup'
Bundler.require(:default)

I do not know what it does exactly, but this loads all gems specified in the Gemfile and thus making

212

http://rubygems.org/

I Love Ruby 2015 Beta

available readily all gems we need to run the program. Possibly if I learn more in the future I will

update this section or most possibly not. All you have to do to fetch and install all the gems into the

system is type this in the terminal :

$ bundle install

or in short

$ bundle

Thats it. All the gems in its latest version will get installed in your system and will be available for

the program that needs it73. Enjoy life!

Creating a gem
You might have learned something about Ruby reading my book. Its not enough if you just keep

using the great contributions others have done to make your programming life easier, you must

contribute back to the community. In this section I will be telling you how to create a gem74 for your

self and publish it in http://rubygems.org . To create a gem I will be using the following code:

require 'net/http'

Converts currency from one format to another, for example from USD to
EUR
from_curr the code for the currency that needs to be converted
to_curr the code for the currency that needs to be converted to
amount amount of money in from_curr
def convert_currency(from_curr = "INR", to_curr = "USD", amount = 1000)

host = "www.google.com"
http = Net::HTTP.new(host, 80)
url = "/finance/converter?a=#{amount}&from=#{from_curr}&to=#{to_curr}"
response = http.get(url)
puts response.body
result = response.body
regexp = Regexp.new("(\\d+\\.{0,1}\\d*)\\s+#{to_curr}")
regexp.match result
return $1.to_f

end

This code, by using some magic converts currency (it requires Internet to do it). I am going to call

this gem money-mind so let me create a folder called money­mind and another folder in it called

73 And yup if you want to know more checkout this link http://bundler.io/gemfile.html
74 The truth is you could write any crap Ruby program and can call it a gem. Isn't that great. You can't do this stuff in

an other language!!

213

http://rubygems.org/
http://bundler.io/gemfile.html

I Love Ruby 2015 Beta

lib and let me put this code inside the file called money­mind.rb , so now I have a file in location

money­mind/lib/money­mind.rb

The next step is the most important one, we create a file named money­mind.gemspec in the folder

money-mind, ad put this stuff into it

 Gem::Specification.new do |s|
 s.name = 'money­mind'
 s.version = '0.0.0'
 s.date = '2012­11­05'
 s.summary = "Money Mind"
 s.description = "A simple currency conversion code in Ruby"
 s.authors = ["Karthikeyan A K"]
 s.email = '77minds@gmail.com'
 s.files = ["lib/money­mind.rb"]
end

If at all you want to have a testing thing for the money-mind gem create a folder named test and put

the code below in currency_test.rb

require '../lib/money­mind.rb'

puts convert_currency("USD", "EUR", 1000)

The test stuff is optional, now navigate to the money­mind folder in your terminal and punch out the

following code and press enter.

$ gem build money­mind.gemspec

As you may have inferred you use the gemspec file to create a gem. I wish most stuff in gemspec

file will be fairly straightforward, just take note of this line s.files = ["lib/money­mind.rb"] ,

its here we add the files that need to included in the gem. OK when you press enter you will get

some stuff like as shown below.

WARNING: no homepage specified
 Successfully built RubyGem
 Name: money­mind
 Version: 0.0.0
 File: money­mind­0.0.0.gem

Just ignore the warning message for the time being. The moral of the story is gem build

<path_to_gemspec_file>/<gemspec_file_name> builds the gem somehow. So Yahooooooo!

Gooooooooogle! We have created our own gem!!! Time to celebrate. If you see money-mind folder

you will see anew file named money­mind­0.0.0.gem , now thats the gem file. Hoping that you

are in the folder where the gem file is, now punch in the following code in terminal

$ gem install money­mind­0.0.0.gem

214

https://raw.github.com/mindaslab/ilrx/master/money-mind/test/currency_test.rb
https://raw.github.com/mindaslab/ilrx/master/money-mind/money-mind.gemspec
https://raw.github.com/mindaslab/ilrx/master/money-mind/lib/money-mind.rb

I Love Ruby 2015 Beta

It should spit a output as shown

Successfully installed money­mind­0.0.0
1 gem installed
Installing ri documentation for money­mind­0.0.0...
Installing RDoc documentation for money­mind­0.0.0...

So the moral of the story here is gem install <path_to_gem_file>/<gems_file_name> installs

the gem file some how. Now if you had read this chapter, you will know how to use it, and we in the

irb example below covert 50 US Dollars to Indian Rupee and 1 US Dollar to Indian Rupee

$ irb ­­simple­prompt
>> require 'money­mind'
=> true
>> convert_currency("USD", "INR", 50)
=> 2710.0
>> convert_currency("USD", "INR", 1)
=> 54.2

Uninstalling a Gem
Finally to uninstall a gem just type gem uninstall <gemname> , so by typing

$ gem uninstall money­mind

You will get a output as shown

Successfully uninstalled money­mind­0.0.0

Which indicates the gem has been uninstalled successfully.

215

I Love Ruby 2015 Beta

Meta Programming
Meta Programming is a art of making programs write programs. That is in run time a program can

modify itself depending on the situation. Lets see about it in this chapter.

Send
Ruby has got a powerful method called send. That is if a object p has got a method name , in ruby

we can call it using p.name or there is another way to call it to. We call call it using p.send(:name)

or p.send(“name”) . Well whats the use of that? The use is this, you can determine what function to

call from the user input or some other input you receive.

Lets see a basic example. Type the program below into a text editor and run it.

#send.rb

class Person
attr_accessor :name

def speak
"Hello I am #{@name}"

end
end

p = Person.new
p.name = "Karthik"
puts p.send(:speak)

Output

Hello I am Karthik

Well, as you see in the part of the code highlighted p.send(:speak) , we are calling the speak

function of instance p of class Person using the send method. Thats it for now about send. Get

excited!!! Tweet that you are learning Metaprogramming and start bragging to your colleagues.

Well, hope you have bragged enough, had a pizza or two. Now lets look at a practical enough

example for this send75 function. Type in the example send_1.rb and execute it

send_1.rb

75 In fact the send function was so practical and useful to humanity that the Noble committee contacted me and begged
me to have its prize. Me being humble and refused it. Am I not humble and great?

216

https://raw.github.com/mindaslab/ilrx/master/send.rb

I Love Ruby 2015 Beta

class Student
 attr_accessor :name, :math, :science, :other
end

s = Student.new
s.name = "Zigor"
s.math = 100
s.science = 100
s.other = 0

print "Enter the subject who's mark you want to know: "
subject = gets.chop
puts "The mark in #{subject} is #{s.send(subject)}"

Output

Enter the subject who's mark you want to know: math
The mark in math is 100

So in the program, we have a class called Student and we create a student who's marks in math,

science and other subjects are 100, 100 and zero. We ask the user to enter the subject who's mark

needs to be known and get it into a variable named subject in these following statements

print "Enter the subject who's mark you want to know: "
subject = gets.chop
now see this line:
puts "The mark in #{subject} is #{s.send(subject)}"

Just notice the highlighted part s.send(subject) , we over here instead of using case or other if or

conditions to check what the subject is and then call the suitable method according, we simply pass

the user input to s.send and it calls the appropriate method and returns the value.

Don't you see a magic here?76

Method Missing
Lets say that you class has only certain methods and if the programmer calls some other crazy

method, and you want to capture it and see if it can still be served, you can use the method_missing

method to capture the method and other stuff.

Lets see a program about method missing. Type in the program method_missing.rb in your test

editor and execute it

method_missing.rb

class Something
def method_missing method, *args, &block

76 If else, just visit a magic show and be satisfied

217

https://raw.github.com/mindaslab/ilrx/method_mising.rb

I Love Ruby 2015 Beta

puts "You called: #{method}"
p args
block.call 7

end
end

s = Something.new
s.call_method "boo", 5 do |x|

x.times{ puts "in block" }
end

Output

You called: call_method
["boo", 5]
in block
in block
in block
in block
in block
in block
in block

Lets see how this program works, in the line s = Something.new we create a new instance variable

s of Something class. Then in the next line we do this s.call_method "boo", 5 , in this line we

call a method called call_method on s, if you look at class Something , you will notice that there

is no method or function called call_method in it, but the program does not throw out error, or

exception or whatever.

Well, what happened? If you notice Something class, you would have seen a method named

method_missing, it has been implemented as shown

def method_missing method, *args, &block
puts "You called: #{method}"
p args
block.call 7

end

This method takes in three arguments, in our code we have named these arguments as method,

*args and &block. The method takes in the method name, the name of the method being called up

s, the *args takes attributes that are passed to the method, in out case its the call_method and

attributes passed are “boo” and 5. The &block takes in any block that is been passed. If you see the

highlighted part where we call call_method on s below

s.call_method "boo", 5 do |x|
x.times{ puts "in block" }

end

We are passing a block to the call_method function which is enclosed by do and end. Inside the

218

I Love Ruby 2015 Beta

block we take a variable x and do some operation with it. This entire block is captured by &block.

Finally we are printing the arguments passed using the statement p args (note that we are not using

*args here) and we care calling the block with block.call 7 (note that we use block and not

&block here) in the method_missing definition. The value 7 gets passed to variable x in the block.

Now lets see how method missing could be used. Let say that we have a class called Person which

has two attributes named name and age, see the code below and execute it

method_missing_in_action.rb

class Person
 attr_accessor :name, :age

 def initialize name, age
 @name, @age = name, age
 end

 def method_missing method_name
 method_name.to_s.match(/get_(\w+)/)
 eval("self.#{$1}")
 end
end

person = Person.new "Zigor", "67893"
puts "#{person.get_name} is #{person.get_age} years old"

Output

Zigor is 67893 years old

In the code above see the highlighted line puts "#{person.get_name} is #{person.get_age}

years old" we call the attributes not like person.name and person.age, instead we use

person.get_name and person.get_age . Now there are no get_name and get_age methods in

person class, instead the code ends up here

def method_missing method_name
 method_name.to_s.match(/get_(\w+)/)
 eval("self.#{$1}")
end

In the method missing method. Look at the highlighted code, where in this line

method_name.to_s.match(/get_(\w+)/) we extract any method that is perpended with get_ ,

then we call the extracted term in this statement eval("self.#{$1}") . If you can't understand

these things, probably you must read Regular Expressions chapter.

Now how to make it useful practically, for example you can have a get_db_<method name> where

219

https://raw.github.com/mindaslab/ilrx/master/method_missing_in_action.rb

I Love Ruby 2015 Beta

you can get values from a database, or say store_db_<method name>(values....) , where you can

capture it and store in in the database. I don't have mood to write such programs, so help yourself.

Define Method
This section we are going to see how to define methods inside a class. Type the program below and

execute it

define_method.rb

class Square
 define_method :area do |side|
 side * side
 end
end

s = Square.new
puts s.area 5

Output

25

Okay, so you get 25 as the output. If you notice the program define_method.rb you would have

notice that in the highlighted lines above we are defining method named area using this awkward

looking statements

define_method :area do |side|
 side * side
end

You may think why not we do it like this:

def area side
 side * side
end

Well, ya, but lets take a situation where we can dynamically define method or to put it, we need to

dynamically define methods.

define_method_dynamic.rb

Book_hash = {author: "Zigor", title: "I Love Ruby", page: 95}

class Book
 Book_hash.each do |key, value|
 define_method key do
 value

220

https://raw.github.com/mindaslab/ilrx/master/define_method_dynamic.rb
https://raw.github.com/mindaslab/ilrx/master/define_method.rb

I Love Ruby 2015 Beta

 end
 end
end

b = Book.new
puts "#{b.author} has written a book named #{b.title}"

Output

Zigor has written a book named I Love Ruby

So in the above program we have two highlighted parts the first one is Book_hash = {author:

"Zigor", title: "I Love Ruby", page: 95} , over here its a constant assigned to a hash value.

In real world it could be a variable loading some hash dynamically from a file. And inside the class

book you see these lines

Book_hash.each do |key, value|
 define_method key do
 value
 end
end

Where we take in each hash value, and we define a method using its its key and the method returns

the value. So when we say b = Book.new , we now have already functions named author , title

and page which returns “Zigor”, “I Love Ruby” and 95 respectively.

For this statement puts "#{b.author} has written a book named #{b.title}" , explain it to

yourself. I don't have the mood to write.

221

I Love Ruby 2015 Beta

Final Word

For 2015 Edition
2015 is the edition of perfection. Hoping to keep it free as in freedom. In this edition, mistakes will

be identified and patched. Thats it. Possibly some content will be added here and there.

For 2014 Edition
Well, this book is still in post beta. For 2014 edition I have added Metaprogramming section

(though its not comprehensive), which I feel will make this book kind of complete. This book

should be seen as my personal notes which I am sharing with others rather than a professional work.

I would love to get your feedback which can be sent to 77minds@gmail.com and will surely work

upon to improve this book.

If I can release another edition in 2014 it might have exception handling chapter.

For 2013 Edition
Its 2013, this edition is a beta release in which I have added two new chapters, one is Rdoc, how to

read and write ruby documentation, and Gems where I tell the reader how to create and use a ruby

gem.

This time the full source text of the book has been launched, making this book 100% free as in

freedom.

For 2012 Edition
I never expected that I will be adding another touch to I Love Ruby. I am now working in a

company called Webtoday Business, here I have 3 people under me who are creating web apps

using Ruby on Rails. I recommended some books for them to learn Ruby, but when I gave ilr to

them they said it was good and must be upgraded, so I started the process of touching the old book

to give new finish.

I have added Regular Expressions chapter in this book. This chapter is far from exhaustive. From

222

mailto:mindaslab@gmail.com

I Love Ruby 2015 Beta

now on all ilr releases will be in relatively quick succession, with little increments and

improvements to it. They may never ever be a major release.

Any way if you have been benefited by this book, drop a word to me.

For 2010 Edition
This is my first book on Ruby. I have just one person for help to write this book, hence I infer there

could be many mistakes that could irritate the reader. I would be happy if the reader forgives me.

Happier still will be I if the reader spots mistakes and notify my. It helps me perfect this book. I

hope this book one day will be the one of the cost effective and quality Ruby study material

available on this planet. Practice a lot, don't just limit with just one study material for Ruby. With

confidence and hard wok I am sure you'll be one of the best Ruby programmers ever. Bye!

223

I Love Ruby 2015 Beta

Appendix

224

I Love Ruby 2015 Beta

Underscore
Well, if you want to see if underscore works in ruby program, download this program

underscore.rb and execute it by typing $ ruby underscore.rb (by changing directory to place

where underscore.rb exists), any way for those who cant download now, here is the program

#!/usr/bin/ruby
underscore.rb

program to check if underscore can be used
in a rb file

87*23
puts "87 X 23 X 5 = #{_*5}" # This wont work

Output

underscore.rb:8: undefined local variable or method `_' for main:Object
(NameError)

The program should spit an error as shown above, proving that underscore does not work in a ruby

file.

225

https://raw.github.com/mindaslab/ilrx/master/x/underscore.rb
https://raw.github.com/mindaslab/ilrx/master/x/underscore.rb

I Love Ruby 2015 Beta

An important Math Discovery
I must confess, sometimes computers do go wrong. In certain cases 1 is equal to 2. Take the equation

a2
−b2

=ab a−b , now put a = b = 1 in it so we get

12
−12

=111−1
1−1=111−1
1−1
1−1

=11

Lets put 1−1=k so we get

k
k
=11

Any number divided by itself is one, so
k
k
=1 , so we get the proof that

k
k

=1=11

1=11
1=2

Didn't I say that computers can go wrong77.

77 Tell this important great discovery to no one. Is a great secret many mathematicians have failed to find out!

226

I Love Ruby 2015 Beta

227

	I love Ruby
	Copyright
	I
	Kannan Doss
	Iain McNulty
	Getting this book
	Getting example programs
	The books source

	Installing Ruby
	Installing Ruby on Debian flavor GNU/Linux
	Installing Ruby Natively (Debian flavor Gnu Linux)
	Installing on Windows and Mac
	Installing IDE

	Online Resources
	Ruby Website
	Ruby Forum
	Twitter

	Getting Started
	Interactive Ruby
	Doing some Math
	Space doesn't matter
	Decimals

	Variables
	Naming Convention
	The underscore – a special variable

	Constants
	Strings
	String Functions
	Escape sequence

	Using Text Editor
	Printing Something
	Getting Input
	Comments

	Comparison and Logic
	Logical Operators
	true != “true”

	if
	if else
	elsif
	unless
	unless else
	case when
	? :
	Assigning logic statement to variables

	Loops
	downto
	times
	upto
	step
	while
	until
	break
	next
	redo
	loop

	Arrays
	More on Array
	Set operations
	Empty array is true

	Hashes and Symbols
	Default values in Hash
	Looping hashes
	More way of hash creation
	Using symbols
	String, frozen string & symbol, their memory foot print

	Ranges
	Ranges used in case .. when
	Checking Intervals
	Using triple dots …

	Functions
	Argument Passing
	Default Argument
	Returning Values
	Keyword arguments
	Recursive function
	Variable number of arguments
	Hashes to functions

	Variable Scope
	Global Variables

	Classes & Objects
	Creating a Square
	Functions in Class
	Initializers or Constructors
	Private Methods
	Class variables and methods
	Inheritance
	Overriding Methods
	The super function
	Extending class
	Reflection
	Encapsulation
	Polymorphism
	Class Constants

	Breaking large programs
	Struct and OpenStruct
	Rdoc
	Reading Ruby Documentation
	Creating Documentation

	Ruby Style Guides
	Modules and Mixins
	Calling functions without include
	Classes in modules
	Mixins

	Shebang
	Date and Time
	Days between two days
	How many days have you lived?

	Files
	Storing output into files
	Taking file as input
	File copy – a kind of
	Displaying a file
	Reading file line by line
	Open and new – the difference
	Defining our own line endings
	Reading byte by byte
	Reading single character at a time
	Renaming files
	Finding out position in a file
	Writing into files
	Appending content into files
	Storing objects into files
	Pstore
	YAML

	Proc, Lambdas and Blocks
	Passing parameters
	Passing Proc to methods
	Returning Proc from function
	Proc and Arrays
	Lambda
	Passing Argument to Lambda
	Proc and Lambdas with Functions
	The second difference
	Lambda and Arrays
	Blocks and Functions

	Multi Threading
	Scope of thread variables
	Thread Exclusion
	Deadlocks
	Creating multiple threads
	Thread Exception
	Thread Class Methods
	Thread Instance Methods

	Exception Handling
	Exception and Threads
	Raising Exceptions

	Regular Expressions
	Creating a empty regexp
	Detecting Patterns
	Things to remember
	The dot
	Character classes
	Scanning
	Captures
	MatchData class
	Anchors and Assertions
	Anchors
	Assertions

	Ignoring Cases
	Ignore Spaces
	Dynamic Regexp

	Gems
	Searching a gem
	Installing gem
	Viewing Documentation
	Using gem
	The Gemfile
	Creating a gem
	Uninstalling a Gem

	Meta Programming
	Send
	Method Missing
	Define Method

	Final Word
	For 2015 Edition
	For 2014 Edition
	For 2013 Edition
	For 2012 Edition
	For 2010 Edition

	Underscore
	An important Math Discovery

